Skip to main content

Advertisement

Log in

The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report new textural and chemical data for 10 garnet peridotite xenoliths from the Udachnaya kimberlite and examine them together with recent data on another 21 xenoliths from the 80–220 km depth range. The samples are very fresh (LOI near zero), modally homogeneous and large (>100 g). Some coarse-grained peridotites show incipient stages of deformation with <10 % neoblasts at grain boundaries of coarse olivine. Such microstructures can only be recognized in very fresh rocks, because fine-grained interstitial olivine is strongly affected by alteration, and may have been overlooked in previous studies of altered peridotite xenoliths in the Siberian and other cratons. Some of the garnet peridotites are similar in composition to low-opx Udachnaya spinel harzburgites (previously interpreted as pristine melt extraction residues), but the majority show post-melting enrichments in Fe and Ti. The least metasomatized coarse peridotites were formed by 30–38 % of polybaric fractional melting between 7 and 4 GPa and ≤1–3 GPa. Our data together with experimental results suggest that garnet in these rocks, as well as in some other cratonic peridotites elsewhere, may be a residual mineral, which has survived partial melting together with olivine and opx. Many coarse and all deformed garnet peridotites from Udachnaya underwent modal metasomatism through interaction of the melting residues with Fe-, Al-, Si-, Ti-, REE-rich melts, which precipitated cpx, less commonly additional garnet. The xenoliths define a complex geotherm probably affected by thermal perturbations shortly before the intrusion of the host kimberlite magmas. The deformation in the lower lithosphere may be linked to metasomatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agashev AM, Ionov DA, Pokhilenko NP, Golovin AV, Cherepanova Yu, Sharygin IS (2013) Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161:201–215. doi:10.1016/j.lithos.2012.11.014

  • Ashchepkov IV, Pokhilenko NP, Vladykin NV, Logvinova AM, Afanasiev VP, Pokhilenko LN, Kuligin SS, Malygina EV, Alymova NA, Kostrovitsky SI, Rotman AY, Mityukhin SI, Karpenko MA, Stegnitsky YB, Khmelnikova OS (2010) Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 485(1–4):17–41

    Article  Google Scholar 

  • Bedini RM, Bodinier J-L (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African rift. Geochim Cosmochim Acta 63(22):3883–3900

    Article  Google Scholar 

  • Bernstein S, Kelemen PB, Brooks CK (1998) Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: restites from high degree melting. Earth Planet Sci Lett 154(1–4):219–233

    Google Scholar 

  • Bernstein S, Kelemen PB, Hanghoj K (2007) Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology 35(5):459–462

    Article  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Article  Google Scholar 

  • Boyd FR, Mertzman SA (1987) Composition and structure of the Kaapvaal lithosphere, Southern Africa. In: Mysen BO (ed) Magmatic processes: physicochemical principles, vol 1. Geochemical Society Special Publications 1, pp 3–12

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 128:228–246

    Article  Google Scholar 

  • Boyd FR, Pearson DG, Hoal KO, Hoal BG, Nixon PH, Kingston MJ, Mertzman SA (2004) Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos 77(1–4):573–592

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Canil D (2004) Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos 77(1–4):375–393

    Article  Google Scholar 

  • Canil D, Wei KJ (1992) Constraints on the origin of mantle-derived low Ca garnets. Contrib Mineral Petrol 109(4):421–430

    Article  Google Scholar 

  • Carlson RW, Pearson DG, James DE (2005) Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys 43:RG1001. doi:10.1029/2004RG000156

    Article  Google Scholar 

  • Clague DA, Moore JG (2002) The proximal part of the giant submarine Wailau landslide, Molokai, Hawaii. J Volcanol Geotherm Res 113(1–2):259–287. doi:10.1016/s0377-0273(01)00261-x

    Article  Google Scholar 

  • Creighton S (2009) A semi-empirical manganese-in-garnet single crystal thermometer. Lithos 112(Suppl 1 (0)):177–182. doi:10.1016/j.lithos.2009.05.011

    Article  Google Scholar 

  • Delaney JS, Smith JV, Dawson JB, Nixon PH (1979) Manganese thermometer for mantle peridotites. Contrib Mineral Petrol 71(2):157–169. doi:10.1007/BF00375432

    Article  Google Scholar 

  • Doucet LS, Ionov DA, Golovin AV, Pokhilenko NP (2012) Depth, degrees and tectonic settings of mantle melting during craton formation: inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet Sci Lett 359–360:206–218. doi:10.1016/j.epsl.2012.10.001

    Article  Google Scholar 

  • Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals: a laser ablation ICP-MS study. Earth Planet Sci Lett 154:53–71

    Article  Google Scholar 

  • Feigenson MD, Bolge LL, Carr MJ, Herzberg CT (2003) REE inverse modeling of HSDP2 basalts: evidence for multiple sources in the Hawaiian plume. Geochem Geophys Geosyst 4(2):8706. doi:10.1029/2001gc000271

    Article  Google Scholar 

  • Fekiacova Z, Abouchami W, Galer SJG, Garcia MO, Hofmann AW (2007) Origin and temporal evolution of Koόlau Volcano, Hawaii: inferences from isotope data on the Koόlau Scientific Drilling Project (KSDP), the Honolulu Volcanics and ODP Site 843. Earth Planet Sci Lett 261(1–2):65–83. doi:10.1016/j.epsl.2007.06.005

    Article  Google Scholar 

  • Gagnon JE, Fryer BJ, Samson IM, Williams-Jones AE (2008) Quantitative analysis of silicate certified reference materials by LA-ICPMS with and without an internal standard. J Analyt Atom Spectrom 23:1529–1537. doi:10.1039/b801807n

    Article  Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3(5):1030. doi:10.1029/2001gc000217

    Article  Google Scholar 

  • Goncharov AG, Ionov DA, Doucet LS, Pokhilenko LN (2012) Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet Sci Lett 357–358:99–110. doi:10.1016/j.epsl.2012.09.016

    Article  Google Scholar 

  • Grégoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petrol 142(5):603–625

    Article  Google Scholar 

  • Griffin WL, Ryan CG, Kaminsky FV, O’Reilly SY, Natapov LM, Win TT, Kinny PD, Ilupin IP (1999) The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310(1–4):1–35

    Article  Google Scholar 

  • Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857

    Article  Google Scholar 

  • Hawkesworth CJ, Gallaher K (1993) Mantle hotspots, plumes and regional tectonics as causes of intraplate magmatism. Terra Nova 5:552–559

    Article  Google Scholar 

  • Hawkesworth CJ, Lightfoot PC, Fedorenko VA, Blake S, Naldrett AJ, Doherty W, Gorbachev NS (1995) Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34(1–3):61–88. doi:10.1016/0024-4937(95)90011-x

    Google Scholar 

  • Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45(12):2507–2530

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43(10):1857–1883

    Article  Google Scholar 

  • Huang S, Frey FA (2003) Trace element abundances of Mauna Kea basalt from phase 2 of the Hawaii Scientific Drilling Project: petrogenetic implications of correlations with major element content and isotopic ratios. Geochem Geophys Geosyst 4(6):8711. doi:10.1029/2002gc000322

    Article  Google Scholar 

  • Ionov DA (2004) Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet facies upper mantle. J Petrol 45(2):343–367. doi:10.1093/petrology/egg090

    Article  Google Scholar 

  • Ionov DA (2010) Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka. J Petrol 51(1–2):327–361. doi:10.1093/petrology/egp090

    Article  Google Scholar 

  • Ionov DA, Hofmann AW (2007) Depth of formation of sub-continental off-craton peridotites. Earth Planet Sci Lett 261(3–4):620–634. doi:10.1016/j.epsl.2007.07.036

    Article  Google Scholar 

  • Ionov DA, Savoyant L, Dupuy C (1992) Application of the ICP-MS technique to trace element analysis of peridotites and their minerals. Geostand Newsl 16(2):311–315

    Article  Google Scholar 

  • Ionov DA, Ashchepkov I, Jagoutz E (2005a) The provenance of fertile off-craton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chem Geol 217(1–2):41–75. doi:10.1016/j.chemgeo.2004.12.001

    Article  Google Scholar 

  • Ionov DA, Chanefo I, Bodinier J-L (2005b) Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites. Contrib Mineral Petrol 150(3):335–353

    Article  Google Scholar 

  • Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J Petrol 51(11):2177–2210. doi:10.1093/petrology/egq053

    Article  Google Scholar 

  • Irvine GJ, Pearson DG, Kjarsgaard BA, Carlson RW, Kopylova MG, Dreibus G (2003) A Re-Os isotope and PGE study of kimberlite-derived peridotite xenoliths from Somerset Island and a comparison to the Slave and Kaapvaal cratons. Lithos 71(2–4):461–488

    Article  Google Scholar 

  • Jenner FE, O’Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosyst 13:Q02005. doi:10.1029/2011gc004009

    Google Scholar 

  • Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol 133:60–68

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49(4):823–839. doi:10.1093/petrology/egm033

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Sharygin VV, Pokhilenko NP, Sobolev NV (2009a) Can pyroxenes be liquidus minerals in the kimberlite magma? Lithos 112(Supplement 1):213–222. doi:10.1016/j.lithos.2009.03.040

  • Kamenetsky VS, Maas R, Kamenetsky MB, Paton C, Phillips D, Golovin AV, Gornova MA (2009b) Chlorine from the mantle: magmatic halides in the Udachnaya-East kimberlite, Siberia. Earth Planet Sci Lett 285(1–2):96–104. doi:10.1016/j.epsl.2009.06.001

  • Kamenetsky VS, Kamenetsky MB, Golovin AV, Sharygin VV, Maas R (2012) Ultrafresh salty kimberlite of the Udachnaya–East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery? Lithos 152:173–186. doi:10.1016/j.lithos.2012.1004.1032

    Article  Google Scholar 

  • Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofimov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214(1–2):75–91. doi:10.1016/s0012-821x(03)00347-9

    Article  Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164(1–2):387–406

    Article  Google Scholar 

  • Kimura J-I, Sisson TW, Nakano N, Coombs ML, Lipman PW (2006) Isotope geochemistry of early Kilauea magmas from the submarine Hilina bench: the nature of the Hilina mantle component. J Volcanol Geotherm Res 151(1–3):51–72. doi:10.1016/j.jvolgeores.2005.07.024

    Article  Google Scholar 

  • Kinny PD, Griffin BJ, Heaman LM, Brakhfogel FF, Spetsius ZV (1997) SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geol Geofiz 38(1):91–99 (in Russian)

    Google Scholar 

  • Kopylova MG, Caro G (2004) Mantle xenoliths from the southeastern Slave craton: evidence for chemical zonation in a thick, cold Lithosphere. J Petrol 45(5):1045–1067

    Article  Google Scholar 

  • Kopylova MG, Russell JK (2000) Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. Earth Planet Sci Lett 181(1–2):71–87

    Article  Google Scholar 

  • Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the Jerico kimberlite: implications for the thermal state of the mantle beneath the Slave craton, Northern Canada. J Petrol 40(1):79–104

    Article  Google Scholar 

  • Laurent O, Martin H, Doucelance R, Moyen JF, Paquette JL (2011) Geochemistry and petrogenesis of high-K "sanukitoids" from the Bulai pluton, Central Limpopo Belt, South Africa: implications for geodynamic changes at the Archaean-Proterozoic boundary. Lithos 123(1–4):73–91

    Google Scholar 

  • Lee C-T, Rudnick RL (1999) Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths the Labait volcano, Tanzania. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of 7th International Kimberlite Conference, vol I: The Dawson Volume. RedRoof Design, Cape Town, pp 503–521

  • Lee C-TA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. In: Jeanloz R, Freeman K (eds) Ann Rev Earth and Planet Sci 39:59-90

  • Lightfoot PC, Naldrett AJ, Gorbachev NS, Doherty W, Fedorenko VA (1990) Geochemistry of the Siberian Trap of the Noril’sk area, USSR, with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contrib Mineral Petrol 104(6):631–644. doi:10.1007/bf01167284

    Article  Google Scholar 

  • Lipman PW, Sisson TW, Coombs ML, Calvert A, Kimura J-I (2006) Piggyback tectonics: long-term growth of Kilauea on the south flank of Mauna Loa. J Volcanol Geotherm Res 151(1–3):73–108. doi:10.1016/j.jvolgeores.2005.07.032

    Article  Google Scholar 

  • Martin H, Moyen JF (2002) Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 30(4):319–322

    Google Scholar 

  • McDonough WF, Sun S–S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Morgan JK, Clague DA, Borchers DC, Davis AS, Milliken KL (2007) Mauna Loa’s submarine western flank: landsliding, deep volcanic spreading, and hydrothermal alteration. Geochem Geophys Geosyst 8(5):Q05002. doi:10.1029/2006gc001420

    Article  Google Scholar 

  • Mori T, Green DH (1978) Laboratory duplication of phase equilibria observed in natural garnet lherzolites. J Geol 86:83–97

    Article  Google Scholar 

  • Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73:158–170

    Article  Google Scholar 

  • Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petrol 159(3):411–427

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139(5):541–554. doi:10.1007/s004100000156

    Article  Google Scholar 

  • Pearce JA, Kempton PD, Nowell GM, Noble SR (1999) Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. J Petrol 40(11):1579–1611. doi:10.1093/petroj/40.11.1579

    Article  Google Scholar 

  • Pearson DG, Wittig N (2008) Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J Geol Soc London 165(5):895–914

    Article  Google Scholar 

  • Pearson DG, Carlson RW, Shirey SB, Boyd FR, Nixon PH (1995) Stabilisation of Archaen lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet Sci Lett 134:341–357

    Article  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry, the mantle and core, vol 2. Elsevier, Amsterdam, pp 171–276

    Chapter  Google Scholar 

  • Pearson DG, Irvine GJ, Ionov DA, Boyd FR, Dreibus GE (2004) Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol 208(1–4, Highly Siderophile Element Behavior in High Temperature Processes):29–59

    Article  Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 38:279–296

    Article  Google Scholar 

  • Reichow MK, Saunders AD, White RV, Al’Mukhamedov AI, Medvedev AY (2005) Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo–Triassic Siberian Traps, Russia. Lithos 79(3–4):425–452. doi:10.1016/j.lithos.2004.09.011

    Article  Google Scholar 

  • Ren Z-Y, Hanyu T, Miyazaki T, Chang Q, Kawabata H, Takahashi T, Hirahara Y, Nichols ARL, Tatsumi Y (2009) Geochemical differences of the Hawaiian shield lavas: implications for melting process in the heterogeneous Hawaiian plume. J Petrol 50(8):1553–1573. doi:10.1093/petrology/egp041

    Article  Google Scholar 

  • Rosen OM, Condie KC, Natapov LM, Nozhkin AD (1994) Archean and Early Proterozoic evolution of the Siberian craton: a preliminary assessment. In: Condie KC (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 411–459

    Chapter  Google Scholar 

  • Rudnick RL, Nyblade AA (1999) The thickness and heat production of Archean lithosphere: constraints from xenolith thermobarometry and surface heat flow. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation. Spec Publ Geochem Soc No 6, vol. Geochemical Society, Houston, pp 3–12

  • Rudnick RL, McDonough WF, Chappell BC (1993) Carbonatite metasomatism in the northern Tanzanian mantle. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Ryan CG, Griffin WL, Pearson NJ (1996) Garnet geotherms: pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J Geophys Res 101(B3):5611–5625

    Article  Google Scholar 

  • Saltzer RL, Chatterjee N, Grove TL (2001) The spatial distribution of garnets and pyroxenes in mantle peridotites: pressure–temperature history of peridotites from the Kaapvaal Craton. J Petrol 42(12):2215–2229. doi:10.1093/petrology/42.12.2215

    Article  Google Scholar 

  • Sand KK, Waight TE, Pearson DG, Nielsen TFD, Makovicky E, Hutchison MT (2009) The lithospheric mantle below southern West Greenland: a geothermobarometric approach to diamond potential and mantle stratigraphy. Lithos 112(Supplement 2):1155–1166

    Article  Google Scholar 

  • Sharygin VV, Golovin AV, Pokhilenko NP, Kamenetsky VS (2007) Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): paragenesis, composition and origin. Eur J Mineral 19(1):51–63. doi:10.1127/0935-1221/2007/0019-0051

    Article  Google Scholar 

  • Shimizu N (1999) Young geochemical features in cratonic peridotites from Southern Africa and Siberia. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation Spec Publ Geochem Soc No 6, vol. Geochemical Society, Houston, pp 47–55

  • Shimizu N, Pokhilenko NP, Boyd FR, Pearson DG (1997) Geochemical characteristics of mantle xenoiliths from the Udachnaya kimberlite pipe. Russ Geol Geophys 38(1):205–217

    Google Scholar 

  • Simon NSC, Irvine GJ, Davies GR, Pearson DG, Carlson RW (2003) The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71(2–4):289–322

    Article  Google Scholar 

  • Simon NSC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J Petrol 48(3):589–625

    Article  Google Scholar 

  • Sims KWW, DePaolo DJ, Murrell MT, Baldridge WS, Goldstein S, Clague D, Jull M (1999) Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U–230Th-226Ra and 235U–231 Pa disequilibria. Geochim Cosmochim Acta 63(23–24):4119–4138. doi:10.1016/s0016-7037(99)00313-0

    Article  Google Scholar 

  • Smith PM, Asimow PD (2005) Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosyst 6(2):Q02004. doi:10.1029/2004gc000816

    Article  Google Scholar 

  • Sobolev NV (1974) Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. Nauka, Novosibirsk

    Google Scholar 

  • Spetsius ZV, Serenko VP (1990) Composition of the continental upper mantle and lower crust beneath the Siberian platform. Nauka, Moscow

    Google Scholar 

  • Stachel T, Harris JW (1997) Syngenetic inclusions in diamond from the Birim field (Ghana)—a deep peridotitic profile with a history of depletion and re-enrichment. Contrib Mineral Petrol 127:336–352

    Article  Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Obata M (2000) Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process. Geochim Cosmochim Acta 64(4):695–716

    Article  Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile Iherzolite and garnet websterite. Neues Jahrbuch fur Mineralogie-Abhandlungen 172(2–3):381–408

    Google Scholar 

  • van Achterbergh E, Griffin WL, Stiefenhofer J (2001) Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contrib Mineral Petrol 141(4):397–414

    Article  Google Scholar 

  • Van Der Zander I, Sinton JM, Mahoney JJ (2010) Late shield-stage silicic magmatism at Wai‘anae volcano: evidence for hydrous crustal melting in Hawaiian volcanoes. J Petrol 51(3):671–701. doi:10.1093/petrology/egp094

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Walter MJ (2003) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) Treatise on geochemistry vol 2, the mantle and core. Elsevier, Amsterdam, pp 363–394

    Chapter  Google Scholar 

  • Wanless VD, Garcia MO, Trusdell FA, Rhodes JM, Norman MD, Weis D, Fornari DJ, Kurz MD, Guillou H (2006) Submarine radial vents on Mauna Loa Volcano, Hawai`i. Geochem Geophys Geosyst 7(5):Q05001. doi:10.1029/2005gc001086

    Article  Google Scholar 

  • Wittig N, Pearson DG, Webb M, Ottley CJ, Irvine GJ, Kopylova M, Jensen SM, Nowell GM (2008) Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet Sci Lett 274(1–2):24–33

    Article  Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Article  Google Scholar 

  • Xu G, Frey FA, Clague DA, Weis D, Beeson MH (2005) East Molokai and other Kea-trend volcanoes: magmatic processes and sources as they migrate away from the Hawaiian hot spot. Geochem Geophys Geosyst 6(5):Q05008. doi:10.1029/2004gc000830

    Article  Google Scholar 

  • Zinchuk NN, Spetsius ZV, Zuenko VV, Zuev VM (1993) Kimberlite Pipe Udachnaya. Novosibirsk University, Novosibirsk

    Google Scholar 

Download references

Acknowledgments

We thank the ALROSA joint stock company and the open-pit mine staff for access to the site and assistance with sample collection, N. P. Pokhilenko for support in Novosibirsk, P. Nimis for PT calculation spreadsheet, P. Bowden for improving the quality of early versions of the manuscript and C. Alboussière, C. Perrache and J. L. Devidal for analytical and technical assistance. Comments of two anonymous reviewers helped to improve the paper. The research was supported by funding from INSU-CNRS, France (PICS project N5812 and PNP projects in 2010–2012) and grants No 11-05-91060-PICS and No 13-05-00439 of the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc S. Doucet.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doucet, L.S., Ionov, D.A. & Golovin, A.V. The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib Mineral Petrol 165, 1225–1242 (2013). https://doi.org/10.1007/s00410-013-0855-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0855-8

Keywords

Navigation