Skip to main content
Log in

Li, Be, B concentrations and δ7Li values in plagioclase phenocrysts of dacites from Nea Kameni (Santorini, Greece)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Li, Be, B and δ7Li SIMS analyses of plagioclase phenocrysts from the 1040–1941 Niki dacite lava (Nea Kameni, Santorini, Greece) exhibit varied processes. From their anorthite contents alone, the crystals may be segregated into four main types: type-N shows the normal decline in An during crystallisation (An62–40); type-O has only oscillatory zoning accompanied by resorption surfaces (An58–39); type-C is complex with high-An cores (subtype C1: An64–58, subtype C2: An88–73) and normal rims (An55–42). Type-A plagioclase with high An content (An92–82) is found within mafic enclaves. On the basis of their Li concentrations, type-O crystals may be subdivided into subtype O1 with flat Li concentration profiles and subtype O2 with decreasing Li concentration from core to rim. The concentrations of Be and B of all four types show a negative correlation with anorthite content (An), but Li concentration profiles differ amongst the different plagioclase types. Types N and O1, and the cores of type-C, are equilibrated in Li concentration. Types O2 and A, and the mantles of type-C display an initial enrichment in Li, probably from volatile influx into the melt. Consistent with the propensity towards equilibrium with the melt, these crystals display dramatic rim-ward declines in Li concentration. All analysed plagioclase crystals, except for the xenocrystic type-A, have nearly the same Li, Be and B concentrations at their rims. These coincide with the composition of plagioclase microlites in the groundmass, thereby affording estimates of plagioclase-melt partitioning for the light elements: K Li = 0.19–0.28, K Be = 0.24–0.38 and K B = 0.007–0.009. δ7Li profiles in type-O2 and type-A phenocrysts manifest an unmistakable inverse relation to Li concentration, with variations of up to ~39 ‰, revealing preferential kinetic diffusion. This may have been driven by Li loss from the melt, most likely through degassing during decompression, perhaps in the course of magma ascent to subsequent eruption. Considering the rapid diffusion of Li in plagioclase, in situ phenocryst analyses may yield useful information about processes leading up to, or even causing, eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Barton M, Huijsmans JPP (1986) Post-caldera dacites from the Santorini volcanic complex, Aegean Sea, Greece: an example of the eruption of lavas of near-constant composition over a 2,200 year period. Contrib Mineral Petrol 94:472–495

    Article  Google Scholar 

  • Beck P, Barrat JA, Chaussidon M, Gillet P, Bohn M (2004) Li isotopic variations in single pyroxenes from the Northwest Africa 480 shergottite (NWA 480): a record of degassing of Martian magmas? Geochim Cosmochim Acta 68:2925–2933

    Article  Google Scholar 

  • Beck P, Chaussidon M, Barrat JA, Gillet P, Bohn M (2006) Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim Cosmochim Acta 70:4813–4825

    Article  Google Scholar 

  • Berlo K, Blundy J, Turner S, Cashman K, Hawkesworth C, Black S (2004) Geochemical precursors to volcanic activity at Mount St. Helen, USA. Science 306:1167–1169

    Article  Google Scholar 

  • Bindeman IN, Davis AM (2000) Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. Geochim Cosmochim Acta 64:2863–2878

    Article  Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193

    Article  Google Scholar 

  • Blundy JD, Cashman K (2005) Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens volcano. Geology 33:793–796

    Article  Google Scholar 

  • Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL (1998a) Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141

    Article  Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998b) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347

    Article  Google Scholar 

  • Chan LH, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii Scientific Drilling Project and Koolau volcano. Geochem Geophys Geosyst 4:8707–8726

    Article  Google Scholar 

  • Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160

    Article  Google Scholar 

  • Chan LH, Leeman WP, You C-F (2002) Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem Geol 182:293–300

    Article  Google Scholar 

  • Coogan LA, Kasemann S, Chakraborty S (2005) Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet Sci Lett 420:415–424

    Article  Google Scholar 

  • Cunningham GJ, Henderson P, Lowry RK, Nolan J, Reed SJB, Long JVP (1983) Lithium diffusion in silicate melts. Earth Planet Sci Lett 65:203–205

    Article  Google Scholar 

  • Dohmen R, Kasemann S, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochim Cosmochim Acta 74:274–292

    Article  Google Scholar 

  • Druitt TH, Edwards L, Mellors RM, Pyle DM, Sparks RSJ, Lanphere M, Davies M, Barreirio B (1999) Santorini Volcano. Geological Society London, Memoir 19, p 165

  • Elliott T, Jeffcoate A, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245

    Article  Google Scholar 

  • Elliott T, Thomas A, Jeffcoate A, Niu YL (2006) Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443:565–568

    Article  Google Scholar 

  • Friedrich WL, Kromer B, Friedrich M, Heinemeier J, Pfeiffer T, Talamo S (2006) Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312:548

    Article  Google Scholar 

  • Gallagher K, Elliott T (2009) Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet Sci Lett 278:286–296

    Article  Google Scholar 

  • Giletti BJ, Shanahan TM (1997) Alkali diffusion in plagioclase feldspar. Chem Geol 139:3–20

    Article  Google Scholar 

  • Higgins MD (1996) Magma dynamics beneath Kameni Volcano, Thera, Greece, as revealed by crystal size and shape measurements. J Volcanol Geotherm Res 70:37–48

    Article  Google Scholar 

  • Holness MB, Martin VM, Pyle DM (2005) Information about open-system magma chambers derived from textures in magmatic enclaves: the Kameni Islands, Santorini, Greece. Geol Mag 142:637–649

    Article  Google Scholar 

  • Jambon A, Semet MP (1978) Lithium diffusion in silicate glasses of albite, orthoclase, and obsidian composition: an ion-microprobe determination. Earth Planet Sci Lett 37:445–450

    Article  Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Article  Google Scholar 

  • Jochum KP, Pfänder J, Woodhead JD, Willbold M, Stoll B, Herwig K, Amini M, Abouchami W, Hofmann AW (2005) MPI-DING glasses: new geological reference materials for in situ Pb isotope analysis. Geochem Geophys Geosyst 6:1–15

    Article  Google Scholar 

  • Kasemann SA, Jeffcoate AB, Elliott T (2005) Lithium isotope composition of basalt glass reference material. Anal Chem 77:5251–5257

    Article  Google Scholar 

  • Kent AJR, Blundy J, Cashman KV, Cooper KM, Donnelly C, Pallister JS, Reagan M, Rowe MC, Thornber CR (2007) Vapor transfer prior to the October 2004 eruption of Mount St. Helens, Washington. Geology 35:231–234

    Article  Google Scholar 

  • Lofgren G (1974) An experimental study of plagioclase crystal morphology: isothermal crystallization. Am J Sci 274:243–273

    Article  Google Scholar 

  • Lowry RK, Reed SJB, Nolan J, Henderson P, Long JVP (1981) Lithium tracer-diffusion in an alkali-basaltic melt—an ion-microprobe determination. Earth Planet Sci Lett 53:36–40

    Article  Google Scholar 

  • Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the trinity ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751

    Article  Google Scholar 

  • Marschall HR, Ludwig T (2004) The low-boron contest: minimising surface contamination and analysing boron concentrations at the ng/g-level by secondary ion mass spectrometry. Mineral Petrol 81:265–278

    Article  Google Scholar 

  • Martin VM, Holness MB, Pyle DM (2006) Textural analysis of magmatic enclaves from the Kameni Islands, Santorini, Greece. J Volcanol Geotherm Res 154:89–102

    Article  Google Scholar 

  • Metrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli Volcano (Aeolian Islands, Italy). J Petrol 42:1471–1490

    Article  Google Scholar 

  • Muncill GE, Lasaga AC (1988) Crystal-growth kinetics of plagioclase in igneous systems: isothermal H2O-saturated experiments and extension of a growth model to complex silicate melts. Am Mineral 73:982–992

    Google Scholar 

  • Mungall JE (2000) Empirical models relating viscosity and tracer diffusion in magmatic silicate melts. Geochim Cosmochim Acta 66:125–143

    Article  Google Scholar 

  • Mungall JE, Dingwell DB, Chaussidon M (1999) Chemical diffusivities of 18 trace elements in granitoid melts. Geochim Cosmochim Acta 63:2599–2610

    Article  Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesitic magma by intrusion of mafic magma at the Soufrière Hills Volcano, Montserrat, West Indies. J Petrol 41:21–42

    Article  Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Mineral 77:1242–1249

    Google Scholar 

  • Nishio Y, Nakai S, Ishii T, Sano Y (2007) Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodriguez triple junction: constraints on the origin of the Dupal anomaly. Geochim Cosmochim Acta 71:745–759

    Article  Google Scholar 

  • Ottolini L, Bottazzi P, Vannucci R (1993) Quantification of lithium, beryllium, and boron in silicates by secondary ion mass spectrometry using conventional energy filtering. Anal Chem 65:1960–1968

    Article  Google Scholar 

  • Ottolini L, Cámara F, Hawthorne FC, Stirling J (2002) SIMS matrix effects in the analysis of light elements in silicate minerals: comparison with SREF and EMPA data. Am Mineral 87:1477–1485

    Google Scholar 

  • Parkinson IJ, Hammond SJ, James RH, Rogers NW (2007) High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621

    Article  Google Scholar 

  • Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Article  Google Scholar 

  • Rowe MC, Kent AJ, Thornber CR (2008) Using amphibole phenocrysts to track vapor transfer during magma crystallization and transport: an example from Mount St. Helens, Washington. J Volcanol Geotherm Res 178:593–607

    Article  Google Scholar 

  • Ryan JG, Kyle PR (2004) Lithium abundance and isotope variations in mantle sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands. Chem Geol 212:125–142

    Article  Google Scholar 

  • Stamatelopoulou-Seymour K, Vlassopoulos D, Pearce TH, Rice C (1990) The record of magma chamber processes in plagioclase phenocrysts at Thera Volcano, Aegean volcanic arc, Greece. Contrib Mineral Petrol 104:73–84

    Article  Google Scholar 

  • Tang YJ, Zhang HF, Ying J-F (2007a) Review of the lithium isotope system as a geochemical tracer. Int Geol Rev 49:374–388

    Article  Google Scholar 

  • Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007b) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341

    Article  Google Scholar 

  • Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the Earth and Planetary Sciences. Rev Mineral Geochem 55:153–195

    Article  Google Scholar 

  • Tomascak PB, Tera F, Helz R, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910

    Article  Google Scholar 

  • Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238

    Article  Google Scholar 

  • Tsuchiyama A (1985) Dissolution kinetics of plagiclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16

    Article  Google Scholar 

  • Walker JA, Teipel AP, Ryan JG, Syracuse E (2009) Light elements and Li isotopes across the northern portion of the Central American subduction zone. Geochem Geophys Geosys 10, Q06S16. doi:10.1029/2009GC002414

  • Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134

    Article  Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpe C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Ph.D. stipend from the German Academic Exchange Service (DAAD) to Joan A. Cabato. Ilona Fin and Oliver Wienand are thanked for preparing high-quality polished thin sections. Oleksandr Varychev helped with the SEM work. We also thank Sandra Panienka, Iris Sonntag and Ralf Dohmen for discussions, and Adam Kent for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Cabato.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabato, J., Altherr, R., Ludwig, T. et al. Li, Be, B concentrations and δ7Li values in plagioclase phenocrysts of dacites from Nea Kameni (Santorini, Greece). Contrib Mineral Petrol 165, 1135–1154 (2013). https://doi.org/10.1007/s00410-013-0851-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0851-z

Keywords

Navigation