Skip to main content
Log in

Sixty thousand years of magmatic volatile history before the caldera-forming eruption of Mount Mazama, Crater Lake, Oregon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The well-documented eruptive history of Mount Mazama, Oregon, provides an excellent opportunity to use pre-eruptive volatile concentrations to study the growth of an explosive silicic magmatic system. Melt inclusions (MI) hosted in pyroxene and plagioclase crystals from eight dacitic–rhyodacitic eruptive deposits (71–7.7 ka) were analyzed to determine variations in volatile-element concentrations and changes in magma storage conditions leading up to and including the climactic eruption of Crater Lake caldera. Temperatures (Fe–Ti oxides) increased through the series of dacites, then decreased, and increased again through the rhyodacites (918–968 to ~950 to 845–895 °C). Oxygen fugacity began at nickel–nickel-oxide buffer (NNO) +0.8 (71 ka), dropped slightly to NNO +0.3, and then climbed to its highest value with the climactic eruption (7.7 ka) at NNO +1.1 log units. In parallel with oxidation state, maximum MI sulfur concentrations were high early in the eruptive sequence (~500 ppm), decreased (to ~200 ppm), and then increased again with the climactic eruption (~500 ppm). Maximum MI sulfur correlates with the Sr content (as a proxy for LREE, Ba, Rb, P2O5) of recharge magmas, represented by basaltic andesitic to andesitic enclaves and similar-aged lavas. These results suggest that oxidized Sr-rich recharge magmas dominated early and late in the development of the pre-climactic dacite–rhyodacite system. Dissolved H2O concentrations in MI do not, however, correlate with these changes in dominant recharge magma, instead recording vapor solubility relations in the developing shallow magma storage and conduit region. Dissolved H2O concentrations form two populations through time: the first at 3–4.6 wt% (with a few extreme values up to 6.1 wt%) and the second at ≤2.4 wt%. CO2 concentrations measured in a subset of these inclusions reach up to 240 ppm in early-erupted deposits (71 ka) and are below detection in climactic deposits (7.7 ka). Combined H2O and CO2 concentrations and solubility models indicate a dominant storage region at 4–7 km (up to 12 km), with drier inclusions that diffusively re-equilibrated and/or were trapped at shallower depths. Boron and Cl (except in the climactic deposit) largely remained in the melt, suggesting vapor–melt partition coefficients and gas fractions were low. Modeled Li, F, and S vapor–melt partition coefficients are higher than those of B and Cl. The decrease in maximum MI CO2 concentration following the earliest dacitic eruptions is interpreted to result from a broadening of the shallow storage region to greater than the diameter of subjacent feeders, so that greater proportions of reservoir magma were to the side of CO2-bearing vapor bubbles ascending vertically from the locus of recharge magma injection, thereby escaping recarbonation by streaming vapor bubbles. The Mazama melt inclusions provide a picture of a growing magma storage region, where chemical variations in melt and magma occur due to changes in the nature and supply rate of magma recharge, the timing of degassing, and the possible degree of equilibration with gases from below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263:1–18. doi:10.1016/j.chemgeo.2008.10.005

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe–Mg–Mn–Ti oxides: Fe–Ti oxides. Am Mineral 73:714–726

    Google Scholar 

  • Bachmann O, Wallace PJ, Bourquin J (2010) The melt inclusion record from the rhyolitic Kos Plateau Tuff (Aegean Arc). Contrib Mineral Petrol 159:187–202. doi:10.1007/s00410-009-0423-4

    Article  Google Scholar 

  • Bacon CR (1983) Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A. J Volcanol Geotherm Res 18:57–115. doi:10.1016/0377-0273(83)90004-5

    Article  Google Scholar 

  • Bacon CR (1989) Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. Geochim Cosmochim Acta 53:1055–1066

    Article  Google Scholar 

  • Bacon CR (1992) Partially melted granodiorite and related rocks ejected from Crater Lake caldera, Oregon. Trans R Soc Edinb Earth Sci 83:27–47

    Article  Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256

    Article  Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Am Mineral 73:57–61

    Google Scholar 

  • Bacon CR, Lanphere MA (2006) Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon. Geol Soc Am Bull 118:1331. doi:10.1130/B25906.1

    Article  Google Scholar 

  • Bacon CR, Lowenstern JB (2005) Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet Sci Lett 233:277–293. doi:10.1016/j.epsl.2005.02.012

    Article  Google Scholar 

  • Bacon CR, Newman S, Stolper E (1992) Water, CO2, Cl, and F in melt inclusions in phenocrysts from three Holocene explosive eruptions, Crater Lake, Oregon. Am Mineral 77:1021–1030

    Google Scholar 

  • Baker DR, Moretti R (2011) Modeling the solubility of sulfur in magmas: a 50-year old geochemical challenge. Rev Mineral Geochem 73:167–213. doi:10.2138/rmg.2011.73.7

    Article  Google Scholar 

  • Behrens H, Tamic N, Holtz F (2004) Determination of the molar absorption coefficient for the infrared absorption band of CO2 in rhyolitic glasses. Am Mineral 89:301–306

    Google Scholar 

  • Benjamin ER, Plank T, Wade JA, Kelley KA, Hauri EH, Alvarado GE (2007) High water contents in basaltic magmas from Irazú Volcano, Costa Rica. J Volcanol Geotherm Res 168:68–92

    Article  Google Scholar 

  • Berlo K, Blundy J, Turner S, Cashman K, Hawkesworth C, Black S (2004) Geochemical precursors to volcanic activity at Mount St. Helens, USA. Science 306:1167–1169

    Article  Google Scholar 

  • Blundy J, Cashman KV, Rust A, Witham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290:289–301. doi:10.1016/j.epsl.2009.12.013

    Article  Google Scholar 

  • Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106:129–141. doi:10.1007/BF00306429

    Article  Google Scholar 

  • Carroll MR, Webster JD (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Mineralogical Society of America, Washington, D.C., pp 231–279

    Google Scholar 

  • Chesner CA, Luhr JF (2010) A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia. J Volcanol Geotherm Res 197:259–278. doi:10.1016/j.jvolgeores.2010.06.001

    Article  Google Scholar 

  • Churikova T, Wörner G, Mironov N, Kronz A (2007) Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc. Contrib Mineral Petrol 154:217–239. doi:10.1007/s00410-007-0190-z

    Article  Google Scholar 

  • de Hoog JCM, Hattori KH, Hoblitt RP (2004) Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines. Contrib Mineral Petrol 146:750–761. doi:10.1007/s00410-003-0532-4

    Article  Google Scholar 

  • Donovan JJ (2011) Probewin, Probe for EPMA v. 8.48

  • Druitt TH, Bacon CR (1989) Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 101:245–259. doi:10.1007/BF00375310

    Article  Google Scholar 

  • Friedman I, Long W (1976) Hydration rate of obsidian. Science 191:347–352

    Article  Google Scholar 

  • Gerlach TM (2002) Carbon dioxide emission rate of Kīlauea Volcano: implications for primary magma and the summit reservoir. J Geophys Res 107:2189. doi:10.1029/2001JB000407

    Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039. doi:10(2475/09),2008,01

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2005) Non-equilibrium magma degassing: results from modeling of the ca. 1340 A.D. eruption of Mono Craters, California. Earth Planet Sci Lett 238:1–16. doi:10.1016/j.epsl.2005.07.021

    Article  Google Scholar 

  • Gurenko AA, Trumbull RB, Thomas R, Lindsay JM (2005) A melt inclusion record of volatiles, trace elements and Li–B isotope variations in a single magma system from the Plat Pays Volcanic Complex, Dominica, Lesser Antilles. J Petrol 46:2495–2526. doi:10.1093/petrology/egi063

    Article  Google Scholar 

  • Hattori K (1996) Occurrence and origin of sulfide and sulfate in the 1991 Mount Pinatubo eruption products. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, pp 807–824

  • Hauri E, Wang J, Dixon JE, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114

    Article  Google Scholar 

  • Hildreth W (1996) Kulshan caldera: a quaternary subglacial caldera in the North Cascades, Washington. Geol Soc Am Bull 108:786–793. doi:10.1130/0016-7606(1996)108<0786:KCAQSC>2.3.CO;2

    Article  Google Scholar 

  • Hildreth W (2007) Quaternary magmatism in the cascades—geologic perspectives. US Geological Survey Professional Paper; 1744 125

  • Ihinger PD, Hervig RL, McMillan PF (1994) Analytical methods for volatiles in glasses. Rev Mineral Geochem 30:67–121

    Google Scholar 

  • Johnson ER, Wallace PJ, Cashman KV, Delgado Granados H (2010) Degassing of volatiles (H2O, CO2, S, Cl) during ascent, crystallization, and eruption at mafic monogenetic volcanoes in central Mexico. J Volcanol Geotherm Res 197:225–238. doi:10.1016/j.jvolgeores.2010.02.017

    Article  Google Scholar 

  • Johnson ER, Kamenetsky VS, McPhie J, Wallace PJ (2011) Degassing of the H2O-rich rhyolites of the Okataina Volcanic Center, Taupo Volcanic Zone, New Zealand. Geology 39:311–314. doi:10.1130/G31543.1

    Article  Google Scholar 

  • Kent AJR (2008) Melt inclusions in basaltic and related volcanic rocks. Rev Mineral Geochem 69:273–331. doi:10.2138/rmg.2008.69.8

    Article  Google Scholar 

  • Kent AJR, Blundy J, Cashman K, Cooper KM, Donnelly C, Pallister JS, Reagan M, Rowe MC, Thornber CR (2007) Vapor transport prior to the October 2004 eruption of Mount St. Helens, Washington. Geology 35:231–235

    Article  Google Scholar 

  • Koleszar AM, Kent AJR, Wallace PJ, Scott WE (2012) Controls on long-term low explosivity at andesitic arc volcanoes: insights from Mount Hood, Oregon. J Volcanol Geotherm Res 219–220:1–14. doi:10.1016/j.jvolgeores.2012.01.003

    Article  Google Scholar 

  • Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506. doi:10.2138/am.2009.3011

    Article  Google Scholar 

  • Lepage L (2003) ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Comput Geosci 29:673–678. doi:10.1016/S0098-3004(03)00042-6

    Article  Google Scholar 

  • Li C, Ripley EM (2009) Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: empirical equations and example applications. Econ Geol 104:405–412. doi:10.2113/gsecongeo.104.3.405

    Article  Google Scholar 

  • Lindsay JM, Schmitt AK, Trumbull RB, De Silva SL, Siebel W, Emmermann R (2001) Magmatic evolution of the La Pacana caldera system, Central Andes, Chile: compositional variation of two cogenetic large-volume felsic ignimbrites. J Petrol 42:459–486. doi:10.1093/petrology/42.3.459

    Article  Google Scholar 

  • Liu Y, Anderson AT, Wilson CJN, Davis AM, Steele IM (2006) Mixing and differentiation in the Oruanui rhyolitic magma, Taupo, New Zealand: evidence from volatiles and trace elements in melt inclusions. Contrib Mineral Petrol 151:71–87. doi:10.1007/s00410-005-0046-3

    Article  Google Scholar 

  • Liu Y, Samaha N-T, Baker DR (2007) Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochim Cosmochim Acta 71:1783–1799. doi:10.1016/j.gca.2007.01.004

    Article  Google Scholar 

  • London D, Hervig RL, Morgan GB (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite–pegmatite systems: experimental results with Macusani glass at 200 MPa. Contrib Mineral Petrol 99:360–373. doi:10.1007/BF00375368

    Article  Google Scholar 

  • Lowenstern JB, Bacon CR, Calk LC, Hervig RL, Aines RD (1994) Major-element, trace-element, and volatile concentrations in silicate melt inclusions from the tuff of Pine Grove, Wah Wah Mountains, Utah. US Geological Survey, Open-file Report 94-242

  • Ludwig KR (2009) SQUID2: A User’s Manual (v. 2.50), Berkeley Geochronology Center Special Publication, vol 5. p 104

  • Macdonald R, Smith RL, Thomas JE (1992) Chemistry of the subalkalic silicic obsidians. US. Geological Survey Professional Paper; 1523

  • Mandeville CW, Webster JD, Tappen C, Rutherford MJ, Hauri E, Bacon CR (2005) Depth of andesitic magma storage beneath Mt. Mazama from melt inclusions and experimental petrology. Geochim Cosmochim Acta 69: Goldschmidt Conference Abstracts A636

  • Mandeville CW, Webster JD, Tappen C, Taylor BE, Timbal A, Sasaki A, Hauri E, Bacon CR (2009) Stable isotope and petrologic evidence for open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater Lake, Oregon. Geochim Cosmochim Acta 73:2978–3012. doi:10.1016/j.gca.2009.01.019

    Article  Google Scholar 

  • Mangan M, Sisson T (2000) Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet Sci Lett 183:441–455. doi:10.1016/S0012-821X(00)00299-5

    Article  Google Scholar 

  • Massare D, Metrich N, Clocchiatti R (2002) High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H2O concentrations. Chem Geol 183:87–98

    Article  Google Scholar 

  • Molloy C, Shane P, Nairn I (2008) Pre-eruption thermal rejuvenation and stirring of a partly crystalline rhyolite pluton revealed by the earthquake flat pyroclastics deposits, New Zealand. J Geol Soc 165:435–447. doi:10.1144/0016-76492007-071

    Article  Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for EXCEL. Comput Geosci 28:597–604

    Article  Google Scholar 

  • Ochs III FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314

    Google Scholar 

  • O’Neill HSC, Pownceby MI (1993) Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe–“FeO”, Co–CoO, Ni–NiO and Cu Cu2O oxygen buffers, and new data for the W–WO2 oxygen buffer. Contrib Mineral Petrol 114:296–314. doi:10.1007/BF01046533

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res 21:115–144. doi:10.1111/j.1751-908X.1997.tb00538.x

    Article  Google Scholar 

  • Peng G, Luhr JF, McGee JJ (1997) Factors controlling sulfur concentrations in volcanic apatite. Am Mineral 82:1210–1224

    Google Scholar 

  • Pichavant M (1987) Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. Am Mineral 72:1056–1070

    Google Scholar 

  • Poldervaart A, Gilkey AK (1954) On clouded plagioclase. Am Mineral 39:75–91

    Google Scholar 

  • Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid H2O exchange between melt inclusions in olivine and host magma. Earth Planet Sci Lett 272:541–552. doi:10.1016/j.epsl.2008.05.020

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120. doi:10.2138/rmg.2008.69.3

    Article  Google Scholar 

  • Qin Z, Lu F, Anderson AT Jr (1992) Diffusive reequilibration of melt and fluid inclusions. Am Mineral 77:565–576

    Google Scholar 

  • Roman DC, Cashman KV, Gardner CA, Wallace PJ, Donovan JJ (2006) Storage and interaction of compositionally heterogeneous magmas from the 1986 eruption of Augustine Volcano, Alaska. Bull Volcanol 68:240–254. doi:10.1007/s00445-005-0003-z

    Article  Google Scholar 

  • Rowe MC, Kent AJR, Nielsen RL (2009) Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the cascade volcanic arc. J Petrol 50:61–91. doi:10.1093/petrology/egn072

    Article  Google Scholar 

  • Ruscitto D, Wallace PJ, Johnson ER, Kent AJR, Bindeman IN (2010) Volatile contents of mafic magmas from cinder cones in the Central Oregon high cascades: implications for magma formation and mantle conditions in a hot arc. Earth Planet Sci Lett 298:153–161. doi:10.1016/j.epsl.2010.07.037

    Article  Google Scholar 

  • Ruscitto DM, Wallace PJ, Kent AJR (2011) Revisiting the compositions and volatile contents of olivine-hosted melt inclusions from the Mount Shasta region: implications for the formation of high-Mg andesites. Contrib Mineral Petrol 162:109–132. doi:10.1007/s00410-010-0587-y

    Article  Google Scholar 

  • Scaillet B, Macdonald R (2006) Experimental and thermodynamic constraints on the sulphur yield of peralkaline and metaluminous silicic flood eruptions. J Petrol 47:1413–1437

    Article  Google Scholar 

  • Schatz O, Dolejs D, Stix J, Williams-Jones AE, Layne GD (2004) Partitioning of boron among melt, brine and vapor in the system haplogranite-H2O-NaCl at 800 °C and 100 MPa. Chem Geol 210:135–147. doi:10.1016/j.chemgeo.2004.06.007

    Article  Google Scholar 

  • Schmitt AK (2001) Gas-saturated crystallization and degassing in large-volume, crystal-rich dacitic magmas from the Altiplano-Puna, northern Chile. J Geophys Res 106:30561–30578

    Article  Google Scholar 

  • Schmitt AK, Lindsay JM, de Silva S, Trumbull RB (2002) U–Pb zircon chronostratigraphy of early-Pliocene ignimbrites from La Pacana, north Chile: implications for the formation of stratified magma chambers. J Volcanol Geotherm Res 120:43–53

    Article  Google Scholar 

  • Severs MJ, Azbej T, Thomas JB, Mandeville CW, Bodnar RJ (2007) Experimental determination of H2O loss from melt inclusions during laboratory heating: evidence from Raman spectroscopy. Chem Geol 237:358–371. doi:10.1016/j.chemgeo.2006.07.008

    Article  Google Scholar 

  • Shinohara H, Iiyama J, Matsuo S (1989) Partition of chlorine compounds between silicate melt and hydrothermal solutions: I. Partition of NaCl-KCl. Geochim Cosmochim Acta 53:2617–2630

    Google Scholar 

  • Sisson T, Layne G (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117:619–635. doi:10.1016/0012-821X(93)90107-K

    Article  Google Scholar 

  • Sisson TW, Grove TL, Coleman DS (1996) Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol 126:81–108. doi:10.1007/s004100050237

    Article  Google Scholar 

  • Stormer J (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Am Mineral 68:586–594

    Google Scholar 

  • Spilliaert N, Metrich N, Allard P (2006) S–Cl–F degassing pattern of water-rich alkali basalt: modelling and relationship with eruption styles on Mount Etna volcano. Earth Planet Sci Lett 248:772–786. doi:10.1016/j.epsl.2006.06.031

    Article  Google Scholar 

  • Stix J, Layne GD (1996) Gas saturation and evolution of volatile and light lithophile elements in the Bandelier magma chamber between two caldera-forming eruptions. J Geophys Res 101:25181–25196. doi:10.1029/96JB00815

    Article  Google Scholar 

  • Stolper E (1982) Water in silicate glasses: an infrared spectroscopic study. Contrib Mineral Petrol 81:1–17

    Article  Google Scholar 

  • Vigouroux N, Wallace PJ, Kent AJR (2008) Volatiles in high-K magmas from the Western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J Petrol 49:1589–1618. doi:10.1093/petrology/egn039

    Article  Google Scholar 

  • Wade JA, Plank T, Melson WG, Soto GJ, Hauri EH (2006) Volatile content of magmas from Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157:94–120

    Article  Google Scholar 

  • Walker GPL (1975) A new concept of the evolution of the British Tertiary intrusive centres. J Geol Soc 131:121–141. doi:10.1144/gsjgs.131.2.0121

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Article  Google Scholar 

  • Wallace P, Carmichael ISE (1994) S speciation in submarine basaltic glasses as determined by measurements of SKa X-ray wavelength shifts. Am Mineral 79:161–167

    Google Scholar 

  • Wallace PJ, Gerlach TM (1994) Magmatic vapor source for sulfur dioxide released during volcanic eruptions: evidence from Mount Pinatubo. Science 265:497–499

    Google Scholar 

  • Wallace PJ, Anderson ATJ, Davis AM (1999) Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma system: interpreting the record preserved in melt inclusions from the Bishop Tuff. J Geophys Res 104:20097–20122

    Article  Google Scholar 

  • Webster JD (1992) Fluid–melt interactions involving Cl-rich granites: experimental study from 2 to 8 kbar. Geochim Cosmochim Acta 56:659–678

    Article  Google Scholar 

  • Webster JD, Botcharnikov RE (2011) Distribution of sulfur between melt and fluid in S–O–H–C–Cl-bearing magmatic systems at shallow crustal pressures and temperatures. Rev Mineral Geochem 73:247–283. doi:10.2138/rmg.2011.73.9

    Article  Google Scholar 

  • Webster JD, Holloway JR, Hervig RL (1987) Phase equilibria of a Be, U and F-enriched vitrophyre from Spor Mountain, Utah. Geochim Cosmochim Acta 51:389–402

    Google Scholar 

  • Wiebe RA (1993) The Pleasant Bay Layered Gabbro-Diorite, Coastal Maine: ponding and crystallization of basaltic injections into a silicic magma chamber. J Petrol 34:461–489

    Google Scholar 

  • Wiebe RA (1994) Silicic magma chambers as traps for basaltic magmas: the Cadillac Mountain intrusive complex, Mount Desert Island, Maine. J Geol 102:423–437

    Article  Google Scholar 

  • Wright HMN, Folkes CB, Cas RAF, Cashman KV (2011) Heterogeneous pumice populations in the 2.08-Ma Cerro Galán ignimbrite: implications for magma recharge and ascent preceding a large volume silicic eruption. Bull Volcanol 73:1513–1533. doi:10.1007/s00445-011-0525-5

    Google Scholar 

  • York D (1969) Least squares fitting of a straight line with correlated errors. Earth Planet Sci Lett 5:320–324

    Google Scholar 

  • Yoshimura S, Nakamura M (2011) Carbon dioxide transport in crustal magmatic systems. Earth Planet Sci Lett 307:470–478. doi:10.1016/j.epsl.2011.05.039

    Article  Google Scholar 

  • Zajacz Z, Halter W (2009) Copper transport by high temperature, sulfur-rich magmatic vapor: evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth Planet Sci Lett 282:115–121. doi:10.1016/j.epsl.2009.03.006

    Article  Google Scholar 

  • Zajacz Z, Candela PA, Piccoli PM, Sanchez-Valle C (2012) The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations. Geochim Cosmochim Acta 89:81–101. doi:10.1016/j.gca.2012.04.039

    Article  Google Scholar 

  • Zdanowicz CM, Zielinski GA, Germani MS (1999) Mount Mazama eruption: calendrical age verified and atmospheric impact assessed. Geology 27:621–624. doi:10.1130/0091-7613(1999)027<0621:MMECAV>2.3.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jacob Lowenstern for assistance with use of the FTIR spectrometer and for thoughtful discussions about data, Brad Ito and Joe Wooden for support using the Stanford-USGS SHRIMP-RG, and Robert Oscarson for assistance with use of the electron microprobe. Reviews by Charles Mandeville, Dan Ruscitto, and Adam Kent helped to clarify and improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Michelle Wright.

Additional information

Communicated by G. Moore.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, H.M., Bacon, C.R., Vazquez, J.A. et al. Sixty thousand years of magmatic volatile history before the caldera-forming eruption of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 164, 1027–1052 (2012). https://doi.org/10.1007/s00410-012-0787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0787-8

Keywords

Navigation