Skip to main content
Log in

The origin of high δ18O zircons: marbles, megacrysts, and metamorphism

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The oxygen isotope ratios (δ18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record δ18O values from 5 to 17‰, with 99% below 15‰. However, zircons with anomalously high δ18O, up to 23‰, have been reported in detrital suites; source rocks for these unusual zircons have not been identified. We report data for zircons from Sri Lanka and Myanmar that constrain a metamorphic petrogenesis for anomalously high δ18O in zircon. A suite of 28 large detrital zircon megacrysts from Mogok (Myanmar) analyzed by laser fluorination yields δ18O from 9.4 to 25.5‰. The U–Pb standard, CZ3, a large detrital zircon megacryst from Sri Lanka, yields δ18O = 15.4 ± 0.1‰ (2 SE) by ion microprobe. A euhedral unzoned zircon in a thin section of Sri Lanka granulite facies calcite marble yields δ18O = 19.4‰ by ion microprobe and confirms a metamorphic petrogenesis of zircon in marble. Small oxygen isotope fractionations between zircon and most minerals require a high δ18O source for the high δ18O zircons. Predicted equilibrium values of Δ18O(calcite-zircon) = 2–3‰ from 800 to 600°C show that metamorphic zircon crystallizing in a high δ18O marble will have high δ18O. The high δ18O zircons (>15‰) from both Sri Lanka and Mogok overlap the values of primary marine carbonates, and marbles are known detrital gemstone sources in both localities. The high δ18O zircons are thus metamorphic; the 15–25‰ zircon values are consistent with a marble origin in a rock-dominated system (i.e., low fluid(external)/rock); the lower δ18O zircon values (9–15‰) are consistent with an origin in an external fluid-dominated system, such as skarn derived from marble, although many non-metasomatized marbles also fall in this range of δ18O. High δ18O (>15‰) and the absence of zoning can thus be used as a tracer to identify a marble source for high δ18O detrital zircons; this recognition can aid provenance studies in complex metamorphic terranes where age determinations alone may not allow discrimination of coeval source rocks. Metamorphic zircon megacrysts have not been reported previously and appear to be associated with high-grade marble. Identification of high δ18O zircons can also aid geochronology studies that seek to date high-grade metamorphic events due to the ability to distinguish metamorphic from detrital zircons in marble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashwal LD, Armstrong RA, Roberts RJ, Schmitz MD, Corfu F, Hetherington CJ, Burke K, Gerber M (2007) Geochronology of zircon megacrysts from nepheline-bearing gneisses as constraints on tectonic setting: implications for resetting of the U-Pb and Lu-Hf isotopic systems. Contrib Mineral Petrol 153:389–403

    Article  Google Scholar 

  • Ayers JC, de la Cruz K, Miller C, Switzer O (2003) Experimental study of zircon coarsening in quartzite ± H2O at 1.0 GPa and 1,000°C, with implications for geochronological studies of high-grade metamorphism. Am Mineral 88:365–376

    Google Scholar 

  • Belousova EA, Griffin WL, Pearson NJ (1998) Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineral Mag 62:355–366

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Article  Google Scholar 

  • Bindeman IN, Valley JW (2001) Low δ18O rhyolites from Yellowstone: Magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491–1517

    Article  Google Scholar 

  • Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163–193

    Article  Google Scholar 

  • Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U–Th–Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precam Res 135:251–279

    Article  Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA, EIMF (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681

    Article  Google Scholar 

  • Cavosie AJ, Kita NT, Valley JW (2009) Primitive oxygen isotope-ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am Mineral 94:926–934

    Article  Google Scholar 

  • De Laeter JR, Kennedy AK (1998) A double focusing mass spectrometer for geochronology. Int J Mass Spectrom 178:43–50

    Article  Google Scholar 

  • Dempster TJ, Hay DC, Bluck BJ (2004) Zircon growth in slate. Geology 32:221–224

    Article  Google Scholar 

  • Elsenheimer DW (1988) Petrologic and stable isotopic characteristics of graphite and other carbon-bearing minerals in Sri Lankan granulites. Master’s Thesis, University of Wisconsin

  • Ferry JM (1996) Three novel isograds in metamorphosed siliceous dolomites from the Ballachulish aureole, Scotland. Am Mineral 81:485–494

    Google Scholar 

  • Ferry JM, Newton RC, Manning CE (2002) Experimental determination of the equilibria: rutile + magnesite = geikielite + CO2 and zircon + 2 magnesite = baddeleyite + forsterite + 2 CO2. Am Mineral 87:1342–1350

    Google Scholar 

  • Garnier V, Giuliani G, Ohnenstetter D, Fallick AE, Dubessy J, Banks D, Vinh HQ, Lhomme T, Maluski H, Pecher A, Bakshs KA, Long PV, Trinh PT, Schwartz D (2008) Marble-hosted ruby deposits from Central and Southeast Asia: towards a new genetic model. Ore Geol Rev 34:169–191

    Article  Google Scholar 

  • Giuliani G, Fallick AE, Garnier V, France-Lanord C, Ohnenstetter D, Schwarz D (2005) Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology 33:249–252

    Article  Google Scholar 

  • Gordon SM, Grove M, Whitney DL, Schmitt AK, Teyssier C (2009) Time-temperature-fluid evolution of migmatite dome crystallization: Coupled U-Pb age, Ti thermometry, and O isotopic ion microprobe depth profiling of zircon and monazite. Chem Geol 262:186–201

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlite. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161:13–33

    Article  Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443:811–817

    Article  Google Scholar 

  • Hinton RW, Upton BGJ (1991) The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim et Cosmochim Acta 55:3287–3302

    Article  Google Scholar 

  • Hoffbauer R, Spiering B (1994) Petrologic phase equilibria and stable isotope fractionations of carbonate-silicate parageneses from granulite-grade rocks of Sri Lanka. Precam Res 66:325–349

    Article  Google Scholar 

  • Hölzl S, Hofmann AW, Todt W, Köhler H (1994) U-Pb geochronology of the Sri Lankan basement. Precam Res 66:123–149

    Article  Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon, reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Chantilly, pp 27–55

    Google Scholar 

  • King EM, Barrie CT, Valley JW (1997) Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: magmatic values are preserved in zircon. Geology 25:1079–1082

    Article  Google Scholar 

  • King EM, Valley JW, Davis DW, Kowallis BJ (2001) Empirical determination of oxygen isotope fractionation factors for titanite with respect to zircon and quartz. Geochim et Cosmochim Acta 65:3165–3175

    Article  Google Scholar 

  • Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analyses and the effect of sample topography. Chem Geol 264:43–57

    Article  Google Scholar 

  • Konzett J, Armstrong RA, Gunther D (2000) Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U-Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contrib Mineral Petrol 139:704–719

    Article  Google Scholar 

  • Kresten P, Fels P, Berggren G (1975) Kimberlitic zircons- a possible aid in prospecting for kimberlites. Mineral Deposita 10:47–56

    Article  Google Scholar 

  • Kröner A, Williams IS (1993) Age of metamorphism in the high-grade rocks of Sri Lanka. J Geol 101:513–521

    Article  Google Scholar 

  • Lackey JS, Valley JW, Saleeby JB (2005) Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet Sci Lett 235:315–330

    Article  Google Scholar 

  • Lackey JS, Valley JW, Hincke H (2006) Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: examples from garnet-bearing plutons of the Sierra Nevada batholith. Contrib Mineral Petrol 151:20–44

    Article  Google Scholar 

  • Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada Batholith: the oxygen isotope record. J Petrol 49:1397–1426

    Article  Google Scholar 

  • Lancaster PJ, Fu B, Page FZ, Kita NT, Bickford ME, Hill BM, McLelland JM, Valley JW (2009) Genesis of metapelitic migmatites in the Adirondack Mountains, New York. J Metamorph Geol 27:41–54

    Article  Google Scholar 

  • Land LS, Lynch FL (1996) δ18O values of mudrocks: more evidence for an 18O-buffered ocean. Geochim Cosmochim Acta 60:3347–3352

    Article  Google Scholar 

  • Li X-H, Li Q-L, Liu Y, Tang G-Q (2011) Further characterization of M257 zircon standard: a working reference for SIMS analysis of Li isotopes. J Anal Atom Spectrom 26:352–358

    Article  Google Scholar 

  • Liu Y, Berner Z, Massonne H-J, Zhong D (2006) Carbonatite-like dykes from the eastern Himalaya syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust. J Asian Earth Sci 26:105–120

    Article  Google Scholar 

  • Martin L, Duchene S, Deloule E, Vanderhaeghe O (2006) The isotopic composition of zircon and garnet: a record of the metamorphic history of Naxos, Greece. Lithos 87:174–192

    Article  Google Scholar 

  • Mattinson CG, Wooden JL, Liou JG, Bird DK, Wu CL (2006) Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, western China. Am J Sci 306:683–711

    Article  Google Scholar 

  • Moser DE, Bowman JR, Wooden J, Valley JW, Mazdab F, Kita N (2008) Creation of a continent recorded in zircon zoning. Geology 36:239–242

    Article  Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Google Scholar 

  • Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan Y, Götze J, Häger T, Kröner A, Valley JW (2008) Zircon M257- a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand Geoanal Res 32:247–265

    Article  Google Scholar 

  • Nelson DR (1997) Compilation of SHRIMP U-Pb zircon geochronology data, 1996. Geol Surv West Aust Rec 1997(2):5–10

    Google Scholar 

  • Nemchin AA, Giannini LM, Bodorkos S, Oliver NH (2001) Ostwald ripening as a possible mechanism for zircon overgrowth formation during anatexis: theoretical constraints, a numerical model, and its application to pelitic migmatites of the Tickalara Metamorphics, northwestern Australia. Geochim Cosmochim Acta 65:2771–2787

    Article  Google Scholar 

  • Page FZ, Ushikubo T, Kita NT, Riciputi LR, Valley JW (2007a) High precision oxygen isotope analysis of picogram samples reveals 2-μm gradients and slow diffusion in zircon. Am Mineral 92:1772–1775

    Article  Google Scholar 

  • Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen V, Basei MAS, Valley JW (2007b) Zircons from kimberlites: New insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903

    Article  Google Scholar 

  • Page FZ, Holsing NA, Kita N, Essene EJ, Valley JW (2009) Four stages of metasomatism recorded in zircon from garnet metachert and variable metasomatism in garnet hornblendite, Santa Catalina Island, California. Eos Trans AGU 90(52) Fall Meet Suppl (abstract V51E-1780)

  • Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim Cosmochim Acta 65:4215–4229

    Article  Google Scholar 

  • Peck WH, Valley JW, Graham CM (2003) Slow oxygen diffusion rates in igneous zircons from metamorphic rocks. Am Mineral 88:1003–1014

    Google Scholar 

  • Peck WH, Valley JW, Corriveau L, Davidson A, McLelland J, Farber D (2004) Constraints on terrane boundaries and origin of 1.18 to 1.13 Ga granitoids of the Southern Grenville Province from oxygen isotope ratios of zircon. In: Tollo RP, McLelland J, Corriveau L, Bartholomew MJ (eds) Proterozoic evolution of the Grenville orogen in North America, Memoir, vol 197. Geological Society of America, Boulder, CO, pp 163–181

    Chapter  Google Scholar 

  • Peck WH, Bickford ME, McLelland JM, Nagle AN, Swarr GJ (2010) Mechanism of metamorphic zircon growth in a granulite-facies quartzite, Adirondack Highlands, Grenville Province, New York. Am Mineral 95:1796–1806

    Article  Google Scholar 

  • Pidgeon RT, Furfaro D, Kennedy AK, Nemchin AA, Van Bronswjk W (1994) Calibration of zircon standards for the Curtin SHRIMP II. ICOG 8, U.S. Geol Surv Circ 1107:251

  • Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks: evidence for zirconium mobility at ~250°C. Contrib Mineral Petrol 150:146–155

    Article  Google Scholar 

  • Shieh Y-N (1985) High δ18O granitic plutons from the Frontenac Axis, Grenville Province of Ontario, Canada. Geochim Cosmochim Acta 49:117–123

    Article  Google Scholar 

  • Siebel W, Schmitt AK, Danisik M, Chen F, Meier S, Weiβ S, Eroglu S (2009) Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nat Geosci 2:886–890

    Article  Google Scholar 

  • Spetsius ZV, Belousova EA, Griffin WL, O’Reilly SY, Pearson NJ (2002) Archean sulfide inclusions in Paleozoic zircon megacrystals from the Mir kimberlite, Yakutia: implications for the dating of diamonds. Earth Planet Sci Lett 199:111–126

    Article  Google Scholar 

  • Sutherland FL (1996) Alkaline rocks and gemstones, Australia: a review and synthesis. Aust J Earth Sci 43:323–343

    Article  Google Scholar 

  • Tang J, Zheng Y-F, Wu Y-B, Gong B (2006) Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogen: Implication for tectonic affinity. Precam Res 144:1–18

    Article  Google Scholar 

  • Trail D, Bindeman IN, Watson EB, Schmitt AK (2009) Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochim Cosmochim Acta 73:7110–7126

    Article  Google Scholar 

  • Upton BGJ, Hinton RW, Aspen P, Finch A, Valley JW (1999) Megacrysts and associated xenoliths: Evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland. J Petrol 40:935–956

    Article  Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: Valley JW, Taylor HP, O’Neil JR (eds) Reviews in mineralogy, vol 16. Mineralogical Society of America, Washington, pp 445–490

  • Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Chantilly, pp 343–385

    Google Scholar 

  • Valley JW, Kita NT (2009) In situ oxygen isotope geochemistry by ion microprobe. In: Fayek M (ed) MAC short course: secondary ion mass spectrometry in the earth sciences, vol 41. Mineralogical Association of Canada, Quebec, pp 19–63. ISBN: 978-0-921294-50-4

  • Valley JW, Bohlen SR, Essene EJ, Lamb W (1990) Metamorphism in the Adirondacks. II. The role of fluids. J Petrol 31:555–596

    Google Scholar 

  • Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206

    Article  Google Scholar 

  • Valley JW, Kitchen N, Kohn M, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231

    Article  Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11

    Article  Google Scholar 

  • Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580

    Article  Google Scholar 

  • Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth Planet Sci Lett 148:527–544

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Wu Y-B, Zheng Y-F, Zhao Z-F, Gong B, Liu X, Wu F-Y (2006a) U–Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochim Cosmochim Acta 70:3743–3761

    Article  Google Scholar 

  • Wu F-Y, Yang Y-H, Xie L-W, Yang J-H, Xu P (2006b) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  • Xu P, Wu F, Xie L, Yang Y (2004) Hf isotopic compositions of the standard zircons for U-Pb dating. Chin Sci Bull 49:1641–1648

    Google Scholar 

  • Yui T-F, Zaw K, Wu C-M (2008) A preliminary stable isotope study on Mogok ruby, Myanmar. Ore Geol Rev 34:192–199

    Article  Google Scholar 

Download references

Acknowledgments

We thank George Rossman for contributing the Mogok zircons to this study. We thank Bin Fu for assistance with operation of the WiscSIMS CAMECA 1280 and also John Fournelle for SEM assistance at the University of Wisconsin. Brian Hess assisted in careful preparation of sample mounts. Support for this work was provided by the NSF (EAR-020734, EAR-0838058), DOE (93ER14389), ARC (DP0211706), and the NASA Astrobiology Institute. WiscSIMS is partially supported by NSF-EAR (0319230, 0744079). We thank Jochen Hoefs for editorial handling, and two anonymous reviewers for constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Cavosie.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 651 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavosie, A.J., Valley, J.W., Kita, N.T. et al. The origin of high δ18O zircons: marbles, megacrysts, and metamorphism. Contrib Mineral Petrol 162, 961–974 (2011). https://doi.org/10.1007/s00410-011-0634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0634-3

Keywords

Navigation