Skip to main content
Log in

An AEM study of garnet clinopyroxenite from the Sulu ultrahigh-pressure terrane: formation mechanisms of oriented ilmenite, spinel, magnetite, amphibole and garnet inclusions in clinopyroxene

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Optical microscopy, secondary electron microscopy and analytical electron microscopy were used to characterize crystallographic orientation relationships between oriented mineral inclusions and clinopyroxene (Cpx) host from the Hujialing garnet clinopyroxenite within the Sulu ultrahigh-pressure (UHP) terrane, eastern China. One garnet clinopyroxenite sample (2HJ-2C) and one megacrystic garnet-bearing garnet clinopyroxenite (RZ-11D) were studied. Porphyroblastic clinopyroxene from sample 2HJ-2C contains oriented inclusions of ilmenite (Ilm), spinel (Spl), magnetite and garnet, whereas clinopyroxene inclusions within megacrystic garnet from sample RZ-11D contain oriented inclusions of ilmenite and amphibole. Specific crystallographic relationships were observed between ilmenite/spinel plates and host clinopyroxene in sample 2HJ-2C and between ilmenite plates and host clinopyroxene in sample RZ-11D, i.e. [\( 1\bar{1}00 \)]Ilm//[\( 0\bar{1}0 \)]Cpx (0001)Ilm//(100)Cpx; and [110]Spl//[\( 0\bar{1}0 \)]Cpx (\( \bar{1}11 \))Spl//(100)Cpx. These inclusions are suggested to be primary precipitates via solid-state exsolutions. Most of the needle-like magnetite/spinel inclusions generally occur at the rims or along fractures of clinopyroxene within sample 2HJ-2C. Despite the epitaxial relation with host clinopyroxene, these magnetite/spinel needles would have resulted from fluid/melt infiltrations. Non-epitaxial garnet lamellae in clinopyroxene of sample 2HJ-2C were formed via fluid infiltration-deposition primarily along (010) and subordinately along (100) partings. Epitaxial amphibole plates (with a thickness <1 μm) and lamellae (with a thickness = 1–10 μm) in host clinopyroxene of sample RZ-11D were probably results of hydration processes, although amphibole plates could otherwise be interpreted as exsolution products. Temporal relations between mineral inclusions in each sample can be established, and a semi-quantitative P–T path for this garnet clinopyroxenite body was derived accordingly. The present results show that the Hujialing garnet clinopyroxenite may not have subducted to mantle depths as deep as 250 km during UHP metamorphism as suggested by previous studies. This study demonstrates that the crystallographic and temporal/spatial relationships between aligned inclusions and host minerals are essential to a correct genetic interpretation of metamorphic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ames L, Zhou GZ, Xiong B (1996) Geochronology and geochemistry of ultrahigh-pressure metamorphism with implications for collision of the Sino–Korean and Yangtze cratons, central China. Tectonics 15:472–489

    Article  Google Scholar 

  • Aoki KI, Fujimaki H, Kitamura M (1980) Exsolved garnet-bearing pyroxene megacrysts from some South African kimberlites. Lithos 13:269–279

    Article  Google Scholar 

  • Basu AR, MacGregor ID (1975) Chromite spinels from ultramafic xenoliths. Geochim Cosmochim Acta 39:937–945

    Article  Google Scholar 

  • Bell DR, Rossman GR (1992) Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397

    Article  Google Scholar 

  • Bohlen SR, Boettcher AL (1982) The quartz-coesite transformation: a pressure determination and the effects of other composition. J Geophys Res 87:7073–7078

    Article  Google Scholar 

  • Boudeulle M (1994) Disproportionation in mineral solid solutions: symmetry constraints on precipitate orientation and morphology. Implications for the study of oriented intergrowths. J Appl Crys 27:567–573

    Article  Google Scholar 

  • Boudeulle M, Nisio P (1984) Exsolutions de spinelle dans un clinopyroxene: determination des relations d’orientation en microscopie ct diffraction electronique. C R Acad Sci Pans 298:253–257

    Google Scholar 

  • Bown MG, Gay P (1959) The identification of oriented inclusions in pyroxene crystals. Am Mineral 44:592–602

    Google Scholar 

  • Bundy FR (1980) The P, T phase and reaction diagram for elemental carbon. J Geophys Res 85:6930–6936

    Article  Google Scholar 

  • Chen J, Xu Z (2005) Pargasite and ilmenite exsolution texture in clinopyroxenes from the Hujialing garnet-pyroxenite, Su-Lu UHP terrane, Central China: a geodynamic implication. Eur J Mineral 17:895–903

    Article  Google Scholar 

  • Clarke DB, Pe-Piper GG (1983) Multiply exsolved clinopyroxene megacrysts from the Frank Smith mine, Cape province, South Africa. Lithos 16:75–84

    Article  Google Scholar 

  • Feinberg JM, Wenk HR, Renne PR, Scott GR (2004) Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique. Am Mineral 89:462–466

    Google Scholar 

  • Frick C (1973) Intergrowths of orthopyroxene and ilmenite from Frank Smith Mine, near Rarkly West, South Africa. Trans Geol Soc South Afr 76:195–200

    Google Scholar 

  • Garrison JR Jr, Taylor LA (1981) Petrogenesis of pyroxene-oxide intergrowths from kimberlite and cumulate rocks: coprecipitation or exsolution? Am Mineral 66:723–740

    Google Scholar 

  • Goode ADT, Moore AC (1975) High pressure crystallization of the Ewarara, Kalka and Gosse Pile intrusions, Giles complex, central Australia. Contrib Mineral Petrol 51:77–97

    Article  Google Scholar 

  • Grapes RH (1975) Petrology of the Blue Mountain complex, Marlborough, New Zealand. J Petrol 16:371–428

    Google Scholar 

  • Gurney JJ, Fesq HW, Kable EJD (1973) Clinopyroxene-ilmenite intergrowths from kimberlite: a re-appraisal. In: Nixon PH (ed) Lesotho Kimberlites. Lesotho National Development Corporation, Cape and Transvaal, pp 238–253

    Google Scholar 

  • Hames WE, Menard T (1993) Fluid-assisted modification of garnet composition along rims, cracks, and mineral inclusion boundaries in samples of amphibolite facies schists. Am Mineral 78:338–344

    Google Scholar 

  • Harlov DE, Andersson UB, Förster H-J, Nyström JO, Dulski P, Broman C (2002) Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chem Geol 191:47–72

    Article  Google Scholar 

  • Herzberg CT (1978) Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim Cosmochim Acta 42:945–957

    Article  Google Scholar 

  • Hiramatsu N, Hirajima T (1995) Petrology of the Hujialin garnet clinopyroxenite in the Su-Lu ultrahigh-pressure province, eastern China. The Island Arc 4:310–323

    Article  Google Scholar 

  • Huang XL, Xu YG, Lo CH, Wang RC, Lin CY (2007) Exsolution lamellae in a clinopyroxene megacryst aggregate from Cenozoic basalt, Leizhou Peninsula, South China: petrography and chemical evolution. Contrib Mineral Petrol 154:691–705

    Article  Google Scholar 

  • Hwang SL, Shen P, Yui TF, Chu HT (2003) On the mechanism of resorption zoning in metamorphic garnet. J Metamorphic Geol 21:761–769

    Article  Google Scholar 

  • Hwang SL, Yui TF, Chu HT, Shen P, Schertl HP, Zhang RY, Liou JG (2007) On the origin of oriented rutile needles in garnet from UHP eclogites. J Metamorphic Geol 25:349–362

    Article  Google Scholar 

  • Hwang SL, Shen P, Chu HT, Yui TF (2010) On the coherency-controlled growth habit of precipitates in minerals. J Appl Crystallogr 43:417–428

    Article  Google Scholar 

  • Jahn BM (1999) Sm–Nd isotope tracer study of UHP metamorphic rocks: implications for continental subduction and collisional tectonics. Int Geol Rev 41:859–885

    Article  Google Scholar 

  • Johnson WX, White CL, Marth PE, Ruf PK, Tuominen SM, Wade KD, Russell KC, Aaronson HI (1975) Influence of crystallography on aspects of solid–solid nucleation theory. Metall Trans 6A:911–919

    Google Scholar 

  • Keppler H, Bolfan-Casanova N (2006) Thermodynamics of water solubility and partitioning. Rev Mineral Geochem 62:193–230

    Article  Google Scholar 

  • Le Maitre RW (1965) The significance of the gabbroic xenoliths from Gough Island, South Atlantic. Min Mag 34:303–317

    Article  Google Scholar 

  • Li S, Xiao Y, Liu D, Chen Y, Be N, Zhang Z, Sun S, Cong B, Zhang R, Hart SR, Wang S (1993) Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogite: timing and processes. Chem Geol 109:89–111

    Article  Google Scholar 

  • Li TF, Yang JS, Zhang RY (2008) Geochemical characteristics, UHP metamorphic age, and genesis of the Hujialing garnet clinopyroxenite, Sulu terrane, China. Int Geol Rev 50:48–60

    Article  Google Scholar 

  • Liou JG, Zhang RY, Katayama I, Maruyama S (2002) Global distribution and petrotectonic characterizations of UHPM terranes. In: Parkinson CD, Katayama I, Liou JG, Maruyama S (eds) The diamond-bearing Kokchetav Massif, Kazakhstan: petrochemistry and tectonic evolution of an unique ultrahigh-pressure metamorphic terrane. Universal Academy Press Inc., Tokyo, Japan, pp 15–36

    Google Scholar 

  • Liu F, Xu Z, Liou JG, Katayama I, Masago H, Maruyama S, Yang J (2002) Ultrahigh-P mineral inclusions in zircons from gneissic core samples of the Chinese Continental Scientific Drilling Site in eastern China. Eur J Mineral 14:499–512

    Article  Google Scholar 

  • Liu F, Xu Z, Liou JG (2004) SHRIMP U–Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses southwestern Sulu terrane, eastern China. J Metamorphic Geol 22:315–326

    Article  Google Scholar 

  • Liu F, Liou JG, Xu Z (2005) U–Pb SHRIMP ages recorded in the coesite-bearing zircon domains of paragneisses in the southwestern Sulu terrane, eastern China: new interpretation. Am Mineral 90:790–800

    Article  Google Scholar 

  • Lorretto MH (1994) Electron beam analysis of materials, 2nd edn. Chapman and Hall, London, p 272

    Google Scholar 

  • Massonne HJ, Bautsch HJ (2002) An unusual garnet pryoxenite from the Granulitgebirge, Germany: Origin in the transition zone (>400 km depths) or is a shallower upper mantle region? Int Geol Rev 44:779–796

    Article  Google Scholar 

  • McCallum IS, Okamura FP, Ghose S (1975) Mineralogy and petrology of sample 67075 and the origin of lunar anorthosites. Earth Planet Sci Lett 26:36–53

    Article  Google Scholar 

  • Moore AC (1971) The mineralogy of the Gosse Pile Ultramafic Intrusion, central Australia. II. Pyroxenes. J Geol Soc Aus 18:243–258

    Google Scholar 

  • Morse SA (1969) The Kiglapait layered intrusion, Labrador. Geol Soc Am Mem 112:204

    Google Scholar 

  • Niida N, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Article  Google Scholar 

  • Pawley A (2003) Chlorite stability in mantle peridotite: the reaction clinochlore + enstatite = forsterite + pyrope + H2O. Contrib Mineral Petrol 144:449–456

    Article  Google Scholar 

  • Perkins D, Holland TJB, Newton RC (1981) The Al2O3 contents of enstatite in equilibrium with garnet in the system MgO-Al2O3-SiO2 at 15–40 kbar and 900–1600°C. Contrib Mineral Petrol 78:99–109

    Article  Google Scholar 

  • Poirier JP (1985) Creep of crystals. Cambridge University Press, Cambridge, p 260

    Book  Google Scholar 

  • Proyer A, Krenn K, Hoinkes G (2009) Oriented precipitates of quartz and amphibole in clinopyroxene of metabasites from the Greek Rhodope: a product of open system precipitation during eclogite–granulite–amphibolite transition. J Metamorphic Geol 27:639–654

    Article  Google Scholar 

  • Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge, p 460

    Google Scholar 

  • Ringwood AE, Lovering JF (1970) Significance of pyroxene-ilmenite intergrowths among kimberlite xenoliths. Earth Planet Sci Lett 19:371–375

    Article  Google Scholar 

  • Sanc I, Rieder M (1983) Lamellar pyroxenes and their petrogenetic significance: three examples from the Czech Massif. Contrib Mineral Petrol 84:73–83

    Article  Google Scholar 

  • Sautter V, Harte B (1988) Diffusion gradients in an eclogite xenolith from the Roberts Victor Kimberlite Pipe: 1. Mechanism and evolution of garnet exsolution in Al2O3-rich clinopyroxene. J Petrol 29:1325–1352

    Google Scholar 

  • Sautter V, Harte B (1990) Diffusion gradients in an eclogite xenolith from the Roberts Victor kimberlite pipe: 2. Kinetics and implications for petrogenesis. Contrib Mineral Petrol 105:637–649

    Article  Google Scholar 

  • Schulze DJ, Helmstaedt H, Cassie RM (1978) Pyroxene-ilmenite intergrowths in garnet pyroxenite xenoliths from a New York kimberlite and Arizona latites. Am Mineral 63:258–265

    Google Scholar 

  • Sclar CB, Carrison LC, Stewart OM (1968) High pressure synthesis and stability of hydroxylated orthoenstatite in the system MgO-SiO2–H2O. EOS 49:356

    Google Scholar 

  • Sen G, Jones RE (1988) Exsolved silicate and oxide phases from clinopyroxenes in a single Hawaiian xenolith: implications for oxidation state of the Hawaiian upper mantle. Geology 16:69–72

    Article  Google Scholar 

  • Sepp B, Kunzmann T (2001) The stability of clinopyroxene in the system CaO-MgO-SiO2-TiO2 (CMST). Am Mineral 86:265–270

    Google Scholar 

  • Smith PPK (1977) An electron microscope study of amphibole lamellae in augite. Contrib Mineral Petrol 59:317–332

    Article  Google Scholar 

  • Tomioka N, Fuzino K (1997) Natural (Mg, Fe)SiO3-ilmenite and—perovskite in the Tenham meteorite. Science 277:1084–1086

    Article  Google Scholar 

  • Turnock AC, Eugster HP (1962) Fe-Al oxides: phase relation below 1,000°C. J Petrol 3:533–565

    Google Scholar 

  • Veblen DR, Buseck PR (1979) Chain-width order and disorder in biopyriboles. Am Mineral 64:687–700

    Google Scholar 

  • Veblen DR, Buseck PR (1981) Hydrous pyriboles and sheet silicates in pyroxenes and uralites: intergrowth microstructures and reaction mechanisms. Am Mineral 66:1107–1134

    Google Scholar 

  • Whitney DL, Mechum TA, Dilek Y, Kuehner SM (1996) Modification of garnet by fluid infiltration during regional metamorphism in garnet through sillimanite-zone rocks, Dutchess county, New York. Am Mineral 81:696–705

    Google Scholar 

  • Xu WL, Liu XC, Wang QH, Lin JQ, Wang DY (2004) Garnet exsolution in garnet clinopyroxenite and clinopyroxenite xenoliths in early Cretaceous intrusions from the Xuzhou region, eastern China. Mineral Mag 68:443–453

    Article  Google Scholar 

  • Yamaguchi Y, Akai J, Tomita K (1978) Clinoamphibole lamellae in diopside of garnet lherzolite from Alpe Arami, Bellinzona, Switzerland. Contrib Mineral Petrol 66:263–270

    Article  Google Scholar 

  • Yang JJ (2006) Ca-rich garnet-clinopyroxene rocks at Hujilialin in the Su-Lu terrane (eastern China): deeply subducted arc cumulates? J Petrol 47:965–990

    Article  Google Scholar 

  • Zhang RY, Liou JG (1999) Exsolution lamellae in minerals from ultrahigh-pressure rocks. Int Geol Rev 41:981–993

    Article  Google Scholar 

  • Zhang RY, Liou JG (2003) Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: origin and evolution of garnet exsolution in clinopyroxene. Am Mineral 88:1591–1600

    Google Scholar 

  • Zhang RY, Liou JG, Cong BL (1994) Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su–Lu ultrahigh-P metamorphic terrane, eastern China. J Metamorphic Geol 12:169–186

    Article  Google Scholar 

  • Zhang RY, Hirajima T, Banno S, Cong BL, Liou JG (1995) Petrology of ultrahigh-pressure rocks from the southern Sulu region, eastern China. J Metamorphic Geol 13:659–675

    Article  Google Scholar 

  • Zhang RY, Liou JG, Yang JS, Yui TF (2000) Petrochemical constraints for dual origin of garnet peridotites from the Dabie–Sulu UHP terrane, eastern–central China. J Metamorphic Geol 18:149–166

    Article  Google Scholar 

  • Zhang RY, Zhai SM, Fei YW, Liou JG (2003) Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet. Earth Planet Sci Lett 216:591–601

    Article  Google Scholar 

  • Zhao R, Liou JG, Tsujimori T, Zhang RY (2008) Petrology and U-Pb SHRIMP geochronology of a garnet peridotite, Sulu UHP terrane, east-central China. Int Geol Rev 49:732–752

    Article  Google Scholar 

Download references

Acknowledgments

Helpful suggestions and comments from Prof. T. Hirajima and an anonymous reviewer are highly appreciated. We would also like to thank Jacob Chu for polishing the English of the manuscript. This research was financially supported by National Science Council, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyh-Lung Hwang.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, SL., Yui, TF., Chu, HT. et al. An AEM study of garnet clinopyroxenite from the Sulu ultrahigh-pressure terrane: formation mechanisms of oriented ilmenite, spinel, magnetite, amphibole and garnet inclusions in clinopyroxene. Contrib Mineral Petrol 161, 901–920 (2011). https://doi.org/10.1007/s00410-010-0571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0571-6

Keywords

Navigation