Skip to main content
Log in

Formation of K-feldspar megacrysts in granodioritic plutons by thermal cycling and late-stage textural coarsening

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

K-feldspar megacrysts in granite and granodiorite plutons are generally inferred to be early crystallizing phases (grown to large sizes when the magma was mostly liquid) owing to their large size, euhedral form, and features that suggest deposition by magmatic sedimentation. However, phase equilibrium experiments and natural examples of crystallization and partial melting demonstrate that K-feldspar is one of the last phases to nucleate and that most crystal growth must occur after the magma has exceeded 50% crystallization and is thus largely incapable of flow and sedimentation. Megacryst size distributions, compositions, and textural relationships from the Cretaceous Tuolumne Intrusive Suite, California, reveal that the gradational transition from equigranular to megacrystic granodiorite likely occurred via textural coarsening caused by thermal cycling. Experimental and theoretical studies demonstrate that rising temperature induces relatively more melting in small crystals than in large ones, whereas linear growth rates during cooling are similar. Thus, during thermal cycling material is transferred from small crystals to larger ones. Megacryst growth via thermal cycling during incremental emplacement is consistent with the required late growth of K-feldspar, explains the presence of megacrysts in the inner parts of theTuolumne Intrusive Suite and elsewhere, and may be a common process in formation of megacrystic granitic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Rawi Y, Carmichael ISE (1967) A note on the natural fusion of granite. Am Mineral 52:1806–1814

    Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado; rejuvenation and eruption of an upper-crustal batholith. J Petrol 43(8):1469–1503

    Article  Google Scholar 

  • Bartley JM, Coleman DS, Glazner AF (2008) Incremental pluton emplacement by magmatic crack-seal. Trans Roy Soc Edinb Earth Sci 91(4):383–396

    Google Scholar 

  • Bateman PC (1992) Plutonism in the central part of the Sierra Nevada Batholith, California. In: U. S. Geological Survey Professional Paper, vol 1483, p 186

  • Bateman PC, Chappell BW (1979) Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. Geol Soc Am Bull 90(5):I 465–I 482

    Google Scholar 

  • Bateman PC, Chappell BW, Kistler RW, Peck DL, Busacca AJ (1988) Tuolumne Meadows Quadrangle, California; analytic data. US Geol Surv Bull (B 1819):43

  • Baxter S, Feely M (2002) Magma mixing and mingling textures in granitoids; examples from the Galway Granite, Connemara, Ireland. Miner Petrol 76(1–2):63–74

    Article  Google Scholar 

  • Boudreau AE (1995) Crystal aging and the formation of fine-scale igneous layering. Miner Petrol 54(1–2):55–69

    Article  Google Scholar 

  • Boudreau AE, McBirney AR (1997) The Skaergaard layered series; Part III, Non-dynamic layering. J Petrol 38(8):1003–1020

    Article  Google Scholar 

  • Brodersen RA (1962) The petrology, structure, and age relationships of the Cathedral Peak porphyritic quartz monzonite, central Sierra Nevada, California. Ph.D. dissertation, University of California, Berkeley, p 212

  • Carmichael ISE (1960) The feldspar phenocrysts of some Tertiary acid glasses. Miner Mag 32(251):587–608

    Article  Google Scholar 

  • Carpenter MA (1981) A “conditional spinodal” within the peristerite miscibility gap of plagioclase feldspars. Am Miner 66(5–6):553–560

    Google Scholar 

  • Chappell BW, White AJR (1976) Plutonic rocks of the Lachlan Mobile Zone. 25th international geological congress, Sydney. Excursion guide 13C

  • Cherniak DJ (2002) Ba diffusion in feldspar. Geochim Cosmochim Acta 66(9):1641–1650

    Article  Google Scholar 

  • Clavero JE, Sparks RSJ, Pringle MS, Polanco E, Gardeweg MC (2004) Evolution and volcanic hazards of Taapaca volcanic complex, Central Andes of northern Chile. J Geol Soc London 161(4):603–618

    Article  Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons; geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32(5):433–436

    Article  Google Scholar 

  • Coleman DS, Bartley JM, Glazner AF, Johnson BR (2006) Incremental growth and consolidation of the Half Dome Granodiorite, Tuolumne Intrusive Suite. Eos Trans. AGU, 87, Fall Meet. Suppl., Abstract V22A-08

  • Collins LG, Collins BJ (2002) K-metasomatism of plagioclase to produce microcline megacrysts in the Cathedral Peak granodiorite, Sierra Nevada, California, USA. Internet Publication no. 41, http://www.csun.edu/~vcgeo005/Cathedral.htm

  • Costa A (2005) Viscosity of high crystal content melts: dependence on solid fraction. Geophys Res Lett 32:L22308. doi:10.1029/2005GL024303

  • Costa F, Singer B (2002) Evolution of Holocene dacite and compositionally zoned magma, Volcan San Pedro, Southern volcanic zone, Chile. J Petrol 43(8):1571–1593

    Article  Google Scholar 

  • Costa F, Scaillet B, Pichavant M (2004) Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcan San Pedro (36 degrees S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J Petrol 45(4):855–881

    Article  Google Scholar 

  • Cox RA, Dempster TJ, Bell BR, Rogers G (1996) Crystallization of the Shap Granite; evidence from zoned K-feldspar megacrysts. J Geol Soc London 153(4):625–635

    Article  Google Scholar 

  • Cruden AR (2006) Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. In: Brown M, Rushwer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, UK, pp 456–520

  • Dahlquist JA, Pankhurst RJ, Rapela CW, Casquet C, Fanning CM, Alasino PH, Baez M (2006) The San Blas pluton: an example of carboniferous plutonism in the Sierras Pampeanas, Argentina. J South Am Earth Sci 20(4):341–350

    Article  Google Scholar 

  • Dickson FW (1996) Porphyroblasts of barium-zoned K-feldspar and quartz, Papoose Flat, Inyo Mountains, California; genesis and exploration implications. In: Coyner AR, Fahey PL (eds) Geology and ore deposits of the American Cordillera, Reno, NV, United States, Geological Society of Nevada, Reno, pp 909–924

  • Donhowe DP, Hartel RW (1996) Recrystallization of ice in ice cream during controlled accelerated storage. Int Dairy J 6:1191–1208

    Article  Google Scholar 

  • Eggleton RA (1979) The ordering path for igneous K-feldspar megacrysts. Am Mineral 64(7–8):906–911

    Google Scholar 

  • Essene EJ, Claflin CL, Giorgetti G, Mata PM, Peacor DR, Arkai P, Rathmell MA (2005) Two-, three- and four-feldspar assemblages with hyalophane and celsian: implications for phase equilibria in NaAl2Si2O8–CaAl2Si2O8–NaAlSi3O8–KAlSi3O8. Euro J Miner 17(4):515–535

    Google Scholar 

  • Flores AA, Goff HD (1999) Recrystallization in ice cream after constant and cycling temperature storage conditions as affected by stabilizers. J Dairy Sci 82(7):1408–1415

    Article  Google Scholar 

  • Foland KA (1974) Alkali diffusion in orthoclase. In: Hofmann AW, Giletti BJ, Yoder HS Jr, Yund RA (eds) Geochemical transport and kinetics. Carnegie Institution of Washington, Washington, DC, vol 634, pp 77–98

  • Gagnevin D, Daly JS, Poli G (2005) Microchemical and Sr isotopic investigation of zoned K-feldspar megacrysts; insights into the petrogenesis of a granitic system and disequilibrium crystal growth. J Petrol 46(8):1689–1724

    Article  Google Scholar 

  • Glazner AF, Bartley JM (2006) Is stoping a volumetrically significant pluton emplacement process? Geol Soc Am Bull 118(9–10):1185–1195

    Article  Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14(4–5):4–11

    Article  Google Scholar 

  • Gray W (2003) Chemical and thermal evolution of the Late Cretaceous Tuolumne intrusive suite, Yosemite National Park, California. Ph.D. dissertation, University of North Carolina at Chapel Hill, p 202

  • Gray W, Glazner AF, Coleman DS, Bartley JM (2008) Long-term geochemical variability of the Late Cretaceous Tuolumne Intrusive Suite, central Sierra Nevada, California. Geol Soc Lond Special Publ 304:183–201

    Google Scholar 

  • Guo J, Green TH (1989) Barium partitioning between alkali feldspar and silicate liquid at high temperature and pressure. Contrib Mineral Petrol 102(3):328–335

    Article  Google Scholar 

  • Hartel RW (1998) Mechanisms and kinetics of recrystallization in ice cream. In: Reid DS (ed) The properties of water in foods ISOPOW 6. Blackie Academic and Professional, New York, pp 287-319

  • Higgins MD (1999) Origin of megacrysts in granitoids by textural coarsening; a crystal size distribution (CSD) study of microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California. In: Fernandez C, Castro A, Vigneresse JL (eds) Understanding granites: integrating modern and classical techniques: Geological Society Special Publication 168. The Geological Society of London, UK, pp 207–219

  • Higgins MD, Roberge J (2003) Crystal size distribution of plagioclase and amphibole from Soufrière Hills Volcano, Montserrat: evidence for dynamic crystallization—textural coarsening cycles. J Petrol 44(8):1401–1411

    Article  Google Scholar 

  • Hildreth EW (1977) The magma chamber of the Bishop Tuff: gradients in temperature, pressure and composition. Ph.D. dissertation, University of California, Berkeley, p 328

  • Horsak I, Vacek V, Zacek S (1975) Periodic temperature-changes and crystal ripening. Phys Chem Chem Phys 79(6):525–527

    Google Scholar 

  • Huber NK, Bateman PC, Wahrhaftig C (1989) Geologic map of Yosemite National Park and vicinity, California. U.S. Geological Survey Map I-1874, Scale 1:125,000

  • Kerrick DM (1969) K-feldspar megacrysts from a porphyritic quartz monzonite, central Sierra Nevada, California. Am Mineral 54(5–6):839–848

    Google Scholar 

  • Kistler RW, Chappell BW, Peck DL, Bateman PC (1986) Isotopic variation in the Tuolumne intrusive suite, central Sierra Nevada, California. Contrib Mineral Petrol 94(2):205–220

    Article  Google Scholar 

  • Le Bas MJ (1982) The Caledonian granites and diorites of England and Wales. In: Sutherland DS (ed) Wiley, UK, pp 191–201

  • Lockwood JP (1975) Mount Abbot Quadrangle, central Sierra Nevada, California; analytic data. In: U. S. Geological Survey Professional Paper, p 18

  • Long PE, Luth WC (1986) Origin of K-feldspar megacrysts in granitic rocks; implications of a partitioning model for barium. Am Mineral 71(3–4):367–375

    Google Scholar 

  • Long PE, Drake MJ, Holloway JR (1978) Experimental determination of partition coefficients for Rb, Sr, and Ba between alkali feldspar and silicate liquid. In: International conference on experimental trace element geochemistry, Sedona, Ariz., United States, vol 42, pp 833–846

  • Mahan KH, Bartley JM, Coleman DS, Glazner AF (2003) Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California. Geol Soc Am Bull 115(12):1570–1582

    Article  Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Miner Petrol 78(1):85–98

    Article  Google Scholar 

  • Matzel JP, Bowring SA, Miller RB (2006) Time scales of pluton construction at differing crustal levels; examples from the Mount Stuart and Tenpeak Intrusions, north Cascades, Washington. Geol Soc Am Bull 118(1–2):1412–1430

    Article  Google Scholar 

  • McBirney AR, Hunter RH (1995) The cumulate paradigm reconsidered. J Geol 103(1):114–122

    Article  Google Scholar 

  • McMurry J (2001) Crystal accumulation and shearing in a megacrystic quartz monzonite; Bodoco Pluton, northeastern Brazil. J Petrol 42(2):251–276

    Article  Google Scholar 

  • Means WD, Park Y (1994) New experimental approach to understanding igneous texture. Geology 22(4):323–326

    Article  Google Scholar 

  • Mehnert KR, Buesch W (1981) The Ba content of K-feldspar megacrysts in granites; a criterion for their formation Neues Jahrbuch fuer Mineralogie. Abhandlungen 140(3):221–252

    Google Scholar 

  • Miller TP (2004) Geology of the Ugashik-Mount Peulik volcanic center, Alaska. In: Open-File Report—U. S. Geological Survey, p 19

  • Moore JG, Sisson TW (2007) TI: Igneous origin of K-feldspar Megacrysts in Granitic Rocks of the Sierra Nevada Batholith, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract V43G-07

  • Nabelek PI, Sirbescu M-LC (2006) A kinetic model for crystallization of very low temperature pegmatitic melts. Eos Trans. AGU 87(36) Abstract V53A-02

  • Nakada S, Motomura Y (1999) Petrology of the 1991–1995 eruption at Unzen: effusion pulsation and groundmass crystallization. J Volcanol Geoth Res 89(2):173–196

    Article  Google Scholar 

  • Nishimura K, Kawamoto T, Kobayashi T, Sugimoto T, Yamashita S (2005) Melt inclusion analysis of the Unzen 1991–1995 dacite; implications for crystallization processes of dacite magma. Bull Volcanol 67(7):648–662

    Article  Google Scholar 

  • Pankhurst RJ, Sutherland DS (1982) Caledonian granites and diorites of Scotland and Ireland. In: Sutherland DS (ed) Igneous rocks of the British Isles. Wiley, UK, pp 149–190

    Google Scholar 

  • Paterson S, Vernon R, Zak J (2005) Mechanical instabilities and physical accumulation of K-feldspar megacrysts in granitic magma, Tuolumne Batholith, California, USA. J Virt Explorer Electron Ed. 18 paper 1

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408(6813):669–673

    Article  Google Scholar 

  • Pirsson LV (1899) On the phenocrysts of intrusive igneous rocks. Am J Sci 7:271–280

    Google Scholar 

  • Pirsson LV (1908) Rocks and rock minerals, a manual of the elements of petrology without the use of the microscope. Wiley, New York, p 414

    Google Scholar 

  • Pitcher WS (1997) The nature and origin of granite, 2nd edn. Chapman and Hall, New York, p 387

    Google Scholar 

  • Piwinskii AJ (1968) Studies of batholithic feldspars; Sierra Nevada, California. Contrib Miner Petrol 17(3):204–223

    Article  Google Scholar 

  • Piwinskii AJ, Wyllie PJ (1968) Experimental studies of igneous rock series; a zoned pluton in the Wallowa Batholith, Oregon. J Geol 76(2):205–234

    Article  Google Scholar 

  • Ratke L, Voorhees PW (2002) Growth and coarsening: ostwald ripening in material processing. Springer, Berlin, p 295

    Google Scholar 

  • Rogers JJW (1961) Origin of albite in granitic rocks. Am J Sci 259(3):186–193

    Google Scholar 

  • Rutherford MJ, Sigurdsson H, Carey S, Davis A (1985) The May 18, 1980, eruption of Mount St. Helens 1. Melt composition and experimental phase equilibria. J Geophys Res 90:2929–2947

    Article  Google Scholar 

  • Simakin AG, Bindeman IN (2008) Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems. J Vol Geoth Res 177(4):997–1010

    Article  Google Scholar 

  • Singer BS, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase clues to the dynamics of calc-alkaline magma chambers. Am Miner 80(7–8):776–798

    Google Scholar 

  • Sirbescu M-LC, Nabelek PI (2003) Crustal melts below 400°C. Geology 31(8):685–688

    Article  Google Scholar 

  • Słaby E, Galbarczyk-Gąsiorowska L, Seltmann R, Müller A (2007) Alkali feldspar megacryst growth: geochemical modeling. Miner Petrol 89(1–2):1–29

    Google Scholar 

  • Sorensen S, Harlow GE, Rumble D III (2006) The origin of jadeitite-forming subduction-zone fluids; CL-guided SIMS oxygen-isotope and trace-element evidence. Am Miner 91(7):979–996

    Article  Google Scholar 

  • Stone M, Austin WGC (1961) The metasomatic origin of the potash feldspar megacrysts in the granites of southwest England. J Geol 69(4):464–472

    Article  Google Scholar 

  • Swanson SE (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. Am Mineral 62(9–10):966–978

    Google Scholar 

  • Titus SJ, Clark R, Tikoff B (2005) Geologic and geophysical investigation of two fine-grained granites, Sierra Nevada Batholith, California; evidence for structural controls on emplacement and volcanism. Geol Soc Am Bull 117(9–10):1256–1271

    Article  Google Scholar 

  • Vacek V, Zacek S, Horsak I (1975) Recrystallization rates at periodic temperature changes. Kristal und Technik 10(11):1141–1145

    Article  Google Scholar 

  • Vernon RH (1986) K-feldspar megacrysts in granites; phenocrysts, not porphyroblasts. Earth Sci Rev 23(1):1–63

    Article  Google Scholar 

  • Vernon RH, Paterson SR (2008a) How late are K-feldspar megacrysts in granites? Lithos 104(1–4):327–336

    Article  Google Scholar 

  • Vernon RH, Paterson SR (2008b) Mesoscopic structures resulting from crystal accumulation and melt movement in granites. Trans Roy Soc Edinb Earth Sci 97(4):369–381

    Google Scholar 

  • Vigneresse JL, Tikoff B (1999) Strain partitioning during partial melting and crystallizing felsic magmas. Tetonophysics 312(2–4):117–132

    Article  Google Scholar 

  • Vigneresse JL, Barbey P, Cuney M (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J Petrol 37(6):1579–1600

    Article  Google Scholar 

  • Villeneuve M, Whalen JB, Anderson RG, Struik LC (2001) The Endake Batholith: Episodic plutonism culminating in formation of the Endako Porphyry Molybdenite Deposit, north-central British Columbia. Econ Geol 96(2):171–196

    Article  Google Scholar 

  • Wagener HD (1965) Areal modal variation in the Farrington igneous complex, Chatham and Orange Counties, North Carolina. Southeastern Geol 6:49-77

    Google Scholar 

  • Weinberg RF (2006) Melt segregation structures in granitic plutons. Geology 34(4):305–308

    Article  Google Scholar 

  • Weinberg RF, Sial AN, Pessoa RR (2001) Magma flow within the Tavares Pluton, northeastern Brazil; compositional and thermal convection. Geol Soc Am Bull 113(4):508–520

    Article  Google Scholar 

  • Whitney JA (1988) The origin of granite; the role and source of water in the evolution of granitic magmas. Geol Soc Am Bull 100(12):1886–1897

    Article  Google Scholar 

  • Williamson K (1999) K-feldspar megacrysts, magma mingling, and granitic magma evolution in the Lexington batholith, west-central Maine. MS thesis, University of Massachusetts Amherst, p 80

  • Winkler HGF, Schultes H (1982) On the problem of alkali feldspar phenocrysts in granitic rocks. Neues Jahrbuch fuer Mineralogie. Monatshefte 12:558–564

    Google Scholar 

  • Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice-Hall, New Jersey

    Google Scholar 

  • Wörner G, Wegner W, Kiebala A, Singer BS, Heumann A, Kronz A, Hora J (2004) Evolution of Taapaca volcano, N. Chile, evidence from major and trace element, Sr-, Nd-, Pb-, and U-series isotopes, age dating and chemical zoning in sanidine megacrysts. IAVCEI General Assembly. Volcanism and its impact on society, Pucon

    Google Scholar 

  • Zellmer GF, Clavero JE (2006) Using trace element correlation patterns to decipher a sanidine crystal growth chronology; an example from Taapaca Volcano, Central Andes. J Volcanol Geotherm Res 156(3–4):291–301

    Article  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by grants from the National Science Foundation (EAR-0336070 and EAR-0538129) and student research grants from the Geological Society of America, the University of California’s White Mountain Research Station, and the University of North Carolina at Chapel Hill Martin and Bartlett Funds. Jan van Wagtendonk, Peggy Moore, and Greg Stock of Yosemite National Park Service graciously provided logistical support this work. Thoughtful and thorough reviews by Tony Kemp, an anonymous reviewer, and Editor Jon Blundy greatly improved the manuscript. We thank Drew Coleman, John Bartley, Ryan Mills, Jesse Davis, Rich Gashnig, John Gracely, Bryan Law, Chris Glazner, and Susie Johnson, who assisted in the field and participated in several spirited discussions, and Alan Boudreau and John Rogers for additional discussion and insight. We appreciate the help and use of the color CL at the Smithsonian Institution from Sorena Sorensen. Use of Duke University’s electron microprobe was essential to this work and we thank Alan Boudreau for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breck R. Johnson.

Additional information

Communicated by J. Blundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, B.R., Glazner, A.F. Formation of K-feldspar megacrysts in granodioritic plutons by thermal cycling and late-stage textural coarsening. Contrib Mineral Petrol 159, 599–619 (2010). https://doi.org/10.1007/s00410-009-0444-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0444-z

Keywords

Navigation