Skip to main content
Log in

Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The timing and dynamics of fluid-induced melting in the typical Barrovian sequence of the Central Alps has been investigated using zircon chronology and trace element composition. Multiple zircon domains in leucosomes and country rocks yield U–Pb ages spanning from ~32 to 22 Ma. The zircon formed during Alpine melting can be distinguished from the inherited and detrital cores on the basis of their age, Th/U (<0.1) and trace element composition. Ti-in-zircon thermometry indicates crystallization temperatures around 620–700°C. Their composition allows discriminating between (1) zircon formation in the presence of early garnet, (2) zircon in equilibrium with abundant L-MREE-rich accessory phases (allanite, titanite and apatite) typical of metatonalites, and (3) zircon formed during melting of metasediments in feldspar-dominated assemblages. The distribution of zircon overgrowths and ages indicate that repeated melting events occurred within a single Barrovian metamorphic cycle at roughly constant temperature; that in the country rocks zircon formation was limited to the initial stages of melting, whereas further melting concentrated in the segregated leucosomes; that melting occurred at different times in samples a few meters apart because of the local rock composition and localized influx of the fluids; and that leucosomes were repeatedly melted when fluids became available. The geochronological data force a revision of the temperature–time path of the migmatite belt in the Central Alps. Protracted melting over 10 My followed the fast exhumation of Alpine eclogites contained within the same region and preceded fast cooling in the order of 100°C/Ma to upper crustal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berger A, Rosenberg C, Schmid SM (1996) Ascent, emplacement and exhumation of the Bergell pluton within the Southern Steep Belt of the Central Alps. Schweiz Mineral Petrogr Mitt 76:357–382

    Google Scholar 

  • Berger A, Mercolli I, Engi M (2005) The Lepontine Alps: notes accompanying the tectonic and petrographic map sheet Sopra Ceneri (1:100,000). Schweiz Mineral Petrogr Mitt 85:109–146

    Google Scholar 

  • Berger A, Burri T, Alt-Epping P, Engi M (2008) Tectonically controlled fluid flow and water-assisted melting in the middle crust: an example from the Central Alps. Lithos 102:598–615. doi:10.1016/j.lithos.2007.07.027

    Article  Google Scholar 

  • Bingen B, Austrheim H, Whitehouse M (2001) Ilmenite as a source of zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implications for zircon geochronology. J Petrol 42:355–375. doi:10.1093/petrology/42.2.355

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JM, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170. doi:10.1016/S0009-2541(03)00165-7

    Article  Google Scholar 

  • Brouwer FM, Burri T, Engi M, Berger A (2005) Eclogite relics in the Central Alps: PT-evolution, Lu–Hf ages and implications for formation of tectonic melange zones. Schweiz Mineral Petrogr Mitt 85:147–174

    Google Scholar 

  • Burov E, Yamato P (2008) Continental plate collision, P-T-t-z conditions and unstable vs. stable plate dynamics: Insights from thermo-mechanical modelling. Lithos 103:178–204. doi:10.1016/j.lithos.2007.09.014

    Article  Google Scholar 

  • Burri T, Berger A, Engi M (2005) Tertiary migmatites in the Central Alps: regional distribution, field relations, conditions of formation and tectonic implications. Schweiz Mineral Petrogr Mitt 85:215–232

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306. doi:10.1016/0012-821X(87)90227-5

    Article  Google Scholar 

  • Degeling H, Eggins S, Ellis DJ (2001) Zr budget for metamorphic reactions, and the formation of zircon from garnet breakdown. J Metamorph Geol 65:749–758

    Google Scholar 

  • Dempster TJ, Hay DC, Gordon SH, Kelly NM (2008) Micro-zircon: origin and evolution during metamorphism. J Metamorph Geol 26:499–507. doi:10.1111/j.1525-1314.2008.00772.x

    Article  Google Scholar 

  • Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals: a laser ablation ICP-MS study. Earth Planet Sci Lett 154:53–71. doi:10.1016/S0012-821X(97)00195-7

    Article  Google Scholar 

  • Engi M, Todd CS, Schmatz DR (1995) Tertiary metamorphic conditions in the eastern Lepontine Alps. Schweiz Mineral Petrogr Mitt 75:347–369

    Google Scholar 

  • Engi M, Berger A, Roselle G (2001) The role of tectonic accretion channel in collisional orogeny. Gelogy 29:1143–1146. doi:10.1130/0091-7613(2001)029<1143:ROTTAC>2.0.CO;2

    Article  Google Scholar 

  • Faccenda M, Gerya TV, Chakraborty S (2008) Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 103:257–287. doi:10.1016/j.lithos.2007.09.009

    Article  Google Scholar 

  • Gardien V, Thompson AB, Ulmer P (2000) Melting of biotite + plagioclase + quartz gneisses: the role of H2O in the stability of amphibole. J Petrol 41:651–666. doi:10.1093/petrology/41.5.651

    Article  Google Scholar 

  • Gebauer D (1996) A P-T-t-path for an (ultra-)high-pressure ultramafic/mafic rock-association and its felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example: Alpe Arami (Central Swiss Alps). In: Basu A, Hart SR (eds) Earth processes: reading the isotopic code. American Geophysical Union, Washington DC, pp 309–328

    Google Scholar 

  • Gebauer D (1999) Alpine geochronology of the Central and Western Alps: new constraints for a complex geodynamic evolution. Schweiz Mineral Petrogr Mitt 79:191–208

    Google Scholar 

  • Giger M (1991) Geochronologische und petrographische Studien an Geröllen und Sedimenten der Gonfolite-Lombarda-Gruppe (Südschweiz und Norditalien) und ihr Vergleich mit them alpinen Hinterland, PhD Thesis University of Bern, p 227

  • Goffé B, Bousquet R, Henry P, Le Pichon X (2003) Effect of the chemical composition of the crust on the metamorphic evolution of orogenic wedges. J Metamorph Geol 21:123–141. doi:10.1046/j.1525-1314.2003.00422.x

    Article  Google Scholar 

  • Gregory CJ (2008) Allanite chemistry and U–Th–Pb geochronology. PhD Thesis, Research School of Earth Sciences. The Australian National University Canberra, p 271

  • Gregory C, Rubatto D, Allen C, Williams IS, Hermann J, Ireland T (2007) Allanite micro-geochronology: a LA-ICP-MS and SHRIMP U–Th–Pb study. Chem Geol 245:162–182. doi:10.1016/j.chemgeo.2007.07.029

    Article  Google Scholar 

  • Gregory C, Buick IS, Hermann J, Rubatto D (2009) Mineral-scale trace element and U–Th–Pb age constraints on metamorphism and melting during the Petermann Orogeny (central Australia). J Petrol 50:251–287. doi:10.1093/petrology/egn077

    Article  Google Scholar 

  • Hänny R, Grauert B, Soptrajanova G (1975) Paleozoic migmatites affected by high-grade tertiary metamorphism in the central Alps (Valle Bodengo, Italy)—a geochronological study. Contrib Mineral Petrol 51:173–196. doi:10.1007/BF00372078

    Article  Google Scholar 

  • Hansmann W (1996) Age determinations on the Tertiary Masino-Bregaglia (Bergell) intrusives (Italy, Switzerland): a review. Schweiz Mineral Petrogr Mitt 76:421–452

    Google Scholar 

  • Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852

    Google Scholar 

  • Hermann J, Rubatto D, Trommsdorff V (2006) Sub-solidus Oligocene zircon formation in garnet peridotite during fast decompression and fluid infiltration (Duria, Central Alps). Mineral Petrol 88:181–206. doi:10.1007/s00710-006-0155-3

    Article  Google Scholar 

  • Hiess J, Nutman AP, Bennett VC, Holden P (2008) Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chem Geol 247:323–338. doi:10.1016/j.chemgeo.2007.10.012

    Article  Google Scholar 

  • Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302. doi:10.1016/0016-7037(91)90489-R

    Article  Google Scholar 

  • Hokada T, Harley SL (2004) Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations in Napier Complex, East Antarctica. J Mineral Petrol Sci 99:180–190. doi:10.2465/jmps.99.180

    Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439. doi:10.1046/j.1525-1314.2000.00266.x

    Article  Google Scholar 

  • Hunziker JC (1969) Rb–Sr-Altersbetimmungen aus den Walliser Alpen, Hellglimmer- und Gesamt-gestainswerte. Eclogae Geol Helv 62:527–542

    Google Scholar 

  • Hunziker JC, Desmond J, Hurford AJ (1992) Thirty-two years of geochronological work in the Central and Western Alps: a review on seven maps. Mémoires de Géologie (Lausanne) 13: 59 pg

  • Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petrol 92:413–427. doi:10.1007/BF00374424

    Article  Google Scholar 

  • Jäger E (1973) Die alpine Orogenese im Lichte der radiometrischen Altersbestimmungen. Eclogae Geol Helv 66:11–21

    Google Scholar 

  • Janots E, Engi M, Rubatto D, Berger A, Gregory C (2009) Metamorphic rates in collisional orogeny from in situ allanite and monazite dating. Geology 37:11–14. doi:10.1130/G25192A.1

    Article  Google Scholar 

  • Jung S, Mezger K (2001) Geochronology in migmatites—a Sm–Nd, U–Pb and Rb–Sr study from the Proterozoic Damara belt (Namibia): implications for polyphase development of migmatites in high-grade terranes. J Metamorph Geol 19:77–97. doi:10.1046/j.0263-4929.2000.00297.x

    Article  Google Scholar 

  • Kalt A, Corfu F, Wijbrans JR (2000) Time calibration of a P–T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163. doi:10.1007/s004100050014

    Article  Google Scholar 

  • Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212. doi:10.1111/j.1525-1314.2007.00757.x

    Article  Google Scholar 

  • Köppel V, Grünenfelder M (1975) Concordant U–Pb ages of monazite and xenotime in the central Alps and the timing of high temperature Alpine metamorphism, a preliminary report. Schweiz Mineral Petrogr Mitt 55:129–132

    Google Scholar 

  • Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99:226–237. doi:10.1007/BF00371463

    Article  Google Scholar 

  • Liati A, Gebauer D (2003) Geochronological constraints for the time of metamorphism in the Gruf Complex (Central Alps) and implications for the Adula-Cima Lunga nappe system. Schweiz Mineral Petrogr Mitt 83:159–172

    Google Scholar 

  • Liati A, Gebauer D, Fanning M (2000) U–PbSHRIMP dating of zircon from the Novate granite (Bergell, Central Alps): evidence for Oligocene-Miocene magmatism, Jurassic/Cretaceous continental rifting and opening of the Valais trough. Schweiz Mineral Petrogr Mitt 80:305–316

    Google Scholar 

  • Ludwig KR (2003) Isoplot/Ex version 3.0. A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Centre Spec. Pub., Berkeley, p 70

  • Maxelon M, Mancktelow NS (2005) Three-dimensional geometry and tectonostratigraphy of the Pennine zone, Central Alps. Switz North Italy Earth Sci Rev 71:171–227

    Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J Metamorph Geol 20:727–740. doi:10.1046/j.1525-1314.2002.00400.x

    Article  Google Scholar 

  • Montel J-M (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146. doi:10.1016/0009-2541(93)90250-M

    Article  Google Scholar 

  • Montero P, Bea F, Zinger TF, Scarrow JH, Molina JF, Whitehouse M (2004) 55 million years of continuous anatexis in Central Iberia: Single-zircon dating of the Pena Negra Complex. J Geol Soc London 161:255–263. doi:10.1144/0016-764903-024

    Article  Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim Cosmochim Acta 73:1637–1650. doi:10.1016/j.gca.2008.12.010

    Article  Google Scholar 

  • Oberli F, Meier M, Berger A, Rosenberg CL, Giere R (2004) U–Th–Pb and 230Th/238U disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochim Cosmochim Acta 68:2543–2560. doi:10.1016/j.gca.2003.10.017

    Article  Google Scholar 

  • Prince C, Harris NBW, Vance D (2001) Fluid-enhanced melting during prograde metamorphism. J Geol Soc London 158:233–242

    Article  Google Scholar 

  • Reddy SM, Timms NE, Trimby P, Kinny PD, Buchan C, Blake K (2006) Crystal-plastic deformation of zircon: a defect in the assumption of chemical robustness. Geology 34:257–260. doi:10.1130/G22110.1

    Article  Google Scholar 

  • Romer RL, Schärer U, Steck A (1996) Alpine and pre-Alpine magmatism in the root-zone of the western Central Alps. Contrib Mineral Petrol 123:138–158. doi:10.1007/s004100050147

    Article  Google Scholar 

  • Roselle GT, Thüring M, Engi M (2002) Melonpit: a finite element code for simulating tectonic mass movement and heat flow within subduction zones. Am J Sci 302:381–409. doi:10.2475/ajs.302.5.381

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: distribution coefficients and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138. doi:10.1016/S0009-2541(01)00355-2

    Article  Google Scholar 

  • Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet Sci Lett 167:141–158. doi:10.1016/S0012-821X(99)00031-X

    Article  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468. doi:10.1007/PL00007673

    Article  Google Scholar 

  • Rubatto D, Hermann J, Buick IS (2006) Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, central Australia). J Petrol 47:1973–1996. doi:10.1093/petrology/egl033

    Article  Google Scholar 

  • Rubatto D, Müntener O, Barnhorn A, Gregory C (2008) Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). Am Mineral 93:1519–1529. doi:10.2138/am.2008.2874

    Article  Google Scholar 

  • Schaltegger U, Fanning M, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201. doi:10.1007/s004100050478

    Article  Google Scholar 

  • Schärer U, Cosca M, Steck A, Hunziker J (1996) Termination of major ductile strike-slip shear and differential cooling along the Insubric line (Central Alps): U–Pb, Rb–Sr and 40Ar/39Ar ages of cross-cutting pegmatites. Earth Planet Sci Lett 142:331–351. doi:10.1016/0012-821X(96)00104-5

    Article  Google Scholar 

  • Schmid SM, Pfiffner A, Froitzheim N, Schönborn G, Kissling N (1996) Geophysical–geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15:1036–1064. doi:10.1029/96TC00433

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Steck A, Hunziker JC (1994) The Tertiary structural and thermal evolution of the Central Alps—compressional and extensional structures in an orogenic belt. Tectonophysics 238:229–254. doi:10.1016/0040-1951(94)90058-2

    Article  Google Scholar 

  • Steiger RH (1964) Dating f orogenic phases in the Central Alps by K–Ar of hornblende. J Geophys Res 69:5407–5421. doi:10.1029/JZ069i024p05407

    Article  Google Scholar 

  • Storkey A, Hermann J, Hand M, Buick IS (2005) Using insitu trace element determinations to monitor partial melting processes in metabasites. J Petrol 46:1283–1308

    Google Scholar 

  • Todd CS, Engi M (1997) Metamorphic field gradients in the Central Alps. J Metamorph Geol 15:513–530. doi:10.1111/j.1525-1314.1997.00038.x

    Article  Google Scholar 

  • Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002. doi:10.1093/petrology/egg067

    Article  Google Scholar 

  • Vance D, O’Nions RK (1992) Prograde and retrograde thermal histories from the Central Swiss Alps. Earth Planet Sci Lett 114:113–129. doi:10.1016/0012-821X(92)90155-O

    Article  Google Scholar 

  • Vavra G, Gebauer D, Schmidt R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122:337–358. doi:10.1007/s004100050132

    Article  Google Scholar 

  • Vernon AJ, van der Beek PA, Sinclair HD, Rahn MK (2008) Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. Earth Planet Sci Lett 270:316–329. doi:10.1016/j.epsl.2008.03.053

    Article  Google Scholar 

  • von Blanckenburg F (1992) Combined high-precision chronometry and geochemical tracing using accessory minerals: Applied to the Central-Alpine Bergell intrusion (central Europe). Chem Geol 100:19–40. doi:10.1016/0009-2541(92)90100-J

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest. Earth Sci 308:841–844

    Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527. doi:10.1111/j.1525-1314.2007.00711.x

    Article  Google Scholar 

  • Wiederkehr M, Bousquet R, Schmid SM, Berger A (2008) From subduction to collision: thermal overprint of HP/LT meta-sediments in the north-eastern Lepontine Dome (Swiss Alps) and consequences regarding the tectono-metamorphic evolution of the Alpine orogenic wedge. Swiss J Geosci 101:S127–S155

    Google Scholar 

  • Williams I (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC, Ridley WI (eds) Application of microanalytical techniques to understanding mineralizing processes, vol 7. Reviews in Economic Geology, pp 1–35

  • Williams IS (2001) Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aust J Earth Sci 48:557–580. doi:10.1046/j.1440-0952.2001.00883.x

    Article  Google Scholar 

  • Williams IS, Buick IS, Cartwright I (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J Metamorph Geol 14:29–47. doi:10.1111/j.1525-1314.1996.00029.x

    Article  Google Scholar 

Download references

Acknowledgments

The Electron Microscopy Unit at the Australian National University is thanked for access to the SEM facilities. Courtney Gregory is thanked for assisting during field work and sharing valuable information on these samples. The careful and constructive reviews of Felix Oberli and Anthi Liati are acknowledged. This work was financially supported by the ARC (DP 0556700) and the Swiss National Science Foundation (SNF 200020-109637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Rubatto.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubatto, D., Hermann, J., Berger, A. et al. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contrib Mineral Petrol 158, 703–722 (2009). https://doi.org/10.1007/s00410-009-0406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0406-5

Keywords

Navigation