Skip to main content
Log in

Crystallochemistry and origin of pyroxenes in komatiites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present a detailed mineralogical and major- and trace-element study of pyroxenes in two Archean komatiitic flows in Alexo, Canada. The pyroxenes in spinifex-textured lavas commonly are zoned with cores of magnesian pigeonite and rims of augite. Concentrations of incompatible trace elements are low in pigeonite and jump to higher values in the augite mantles, a variation that can be modelled using accepted partition coefficients and assuming crystallization from komatiitic liquids. Crystallization sequences are very different in different parts of both flows. In the flow top, the sequence is olivine followed by augite: deeper in the spinifex sequence, pigeonite crystallizes after olivine, followed by augite; in lower cumulates, orthopyroxene or augite accompany olivine. In spinifex lavas, pigeonite crystallizes sooner than would be predicted on the basis of equilibrium phase relations. We propose that contrasting crystallization sequences depend on the position in the flow and on the conditions of crystal growth. In the flowtop, rapid cooling causes quench crystallization. Deeper in the spinifex layer, constrained growth in a thermal gradient, perhaps augmented by Soret differentiation, accounts for the early crystallization of pigeonite. The cumulus minerals represent a near-equilibrium assemblage. Augites in Al-undepleted Archean komatiites in various localities in Canada and Zimbabwe have high moderate to high Wo contents but their Mg# (Mg/(Mg + Fe) are lower than in augites in komatiites from Barberton, South Africa. We attribute the combination of high Wo and high Mg# in Barberton rocks to the unusually high CaO/Al2O3 of these Al-depleted komatiites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arndt NT (1976) Melting relations of ultramafic lavas (komatiites) at 1 atm and high pressure. Carnegie Institution Washington. Yearbook, vol 75. Carnegie Institution, Washington, pp 555–562

  • Arndt NT (1977) Thick, layered peridotite-gabbro lava flows in Munro Township, Ontario. Can J Earth Sci 14:2620–2637. doi:10.1139/e77-227

    Article  Google Scholar 

  • Arndt NT (1982) Proterozoic spinifex-textured basalts of Gilmour Island, Hudson Bay. Geol Surv Can Paper 83-1A:137–142

    Google Scholar 

  • Arndt NT (1986) Differentiation of komatiite flows. J Petrol 27:279–301

    Google Scholar 

  • Arndt NT, Fleet ME (1979) Stable and metastable pyroxene crystallization in layered komatiite flows. Am Mineral 64:856–864

    Google Scholar 

  • Arndt NT, Nesbitt RW (1982) Geochemistry of Munro Township basalts. In: Arndt NT, Nisbet EG (eds) Komatiites. George Allen and Unwin, London, pp 309–330

    Google Scholar 

  • Arndt NT, Barnes ST, Lesher CM (2008) Komatiite. Cambridge University Press, London, p 478

  • Ayer JA, Corfu F, Kamo SL, Ketchum J, Kwok K, Trowell N (2002) Evolution of the southern Abitibi greenstone belt based on U–Pb geochronology: autothonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precambrian Res 115:63–95. doi:10.1016/S0301-9268(02)00006-2

    Article  Google Scholar 

  • Barnes S-J (1983) A comparative study of olivine and clinopyroxene spinifex flows from Alexo, Abitibi greenstone belt, Canada. Contrib Mineral Petrol 83:293–308. doi:10.1007/BF00371198

    Article  Google Scholar 

  • Bickle MJ, Arndt NT, Nisbet EG, Orpen JL, Martin A, Keays RR, Renner R (1993) Geochemistry of the igneous rocks of the Belingwe greenstone belt: alteration, contamination and petrogenesis. In: Bickle MJ, Nisbet EG (eds) The geology of the Belingwe Greenstone Belt, Zimbabwe. Balkema, Rotterdam, pp 175–214

    Google Scholar 

  • Campbell IH, Arndt NT (1982) Pyroxene accumulation in spinifex-textured rocks. Geol Mag 119:605–610

    Article  Google Scholar 

  • Dann JC (2000) The Komati Formation, Barberton Greenstone Belt, South Africa, part I: new map and magmatic architecture. S Afr J Earth Sci 6:681–730

    Google Scholar 

  • Dann JC (2001) Vesicular komatiites, 3.5-Ga Komati Formation, Barberton Greenstone Belt, South Africa: inflation of submarine lavas and origin of spinifex zones. Bull Volcanol 63:462–481. doi:10.1007/s004450100164

    Article  Google Scholar 

  • Donaldson CH (1982) Spinifex-textured komatiites: a review of textures, mineral compositions, and layering. In: Arndt NT, Nisbet EG (eds) Komatiites. Allen and Unwin, London, pp 211–244

  • Dupré B, Chauvel C, Arndt NT (1984) Pb and Nd isotopic study of two Archean komatiitic flows from Alexo, Ontario. Geochim Cosmochim Acta 48:1965–1972. doi:10.1016/0016-7037(84)90378-8

    Article  Google Scholar 

  • Faure F, Schiano P (2005) Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236(3–4):882–898. doi:10.1016/j.epsl.2005.04.050

    Article  Google Scholar 

  • Faure F, Arndt N, Libourel G (2006) Formation of spinifex texture in komatiites: an experimental study. J Petrol 47(8):1591–1610. doi:10.1093/petrology/egl021

    Article  Google Scholar 

  • Fleet ME, MacRae ND (1975) A spinifex rock from Munro Township, Ontario. J Can Earth Sci 12:928–939

    Google Scholar 

  • Grove TL, Parman S (2004) Thermal evolution of the Earth as recorded by komatiites. Earth Planet Sci Lett 219:173–187. doi:10.1016/S0012-821X(04)00002-0

    Article  Google Scholar 

  • Grove TL, de Wit MJ, Dann J (1997) Komatiites from the Komati Type Section, Barberton, South Africa. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford Science Publications, Oxford, pp 422–437

    Google Scholar 

  • Grove TL, Parman SW, Dann JC (1999) Conditions of magma generation for Archean komatiites from the Barberton Mountainland, South Africa. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation. The Geochemical Society, Houston, pp 155–167

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental Cpx melt partitioning of 24 trace-elements. Contrib Mineral Petrol 113(1):1–8. doi:10.1007/BF00320827

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43(12):2305–2338. doi:10.1093/petrology/43.12.2305

    Article  Google Scholar 

  • Herd CDK, Treiman AH, McKay GA, Shearer CK (2004) The behavior of Li and B during planetary basalt crystallization. Am Mineral 89(5–6):832–840

    Google Scholar 

  • Jochum KP, Dingwell DB, Rocholl A, Stoll B, Hofmann A, Becker S, Besmehn A, Besesette D, Dietze H-J, Dulski P, Erzinger J, Hellebrand E, Hoppe P, Horn I, Janssens K, Jenner G, Klein M, McDonough WM, Maetz M, Mezger K, Münker C, Nikogosian IK, Pickhart C, Raczek I, Rhede D, Seufert HM, Simakin SG, Sobolev AV, Spettel B, Straub S, Vincze L, Wallianos A, Weckwerth G, Weyer S, Wolf D, Zimmer M (2000) The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in situ microanalysis. Geostand Newsl 24:87–133. doi:10.1111/j.1751-908X.2000.tb00590.x

    Article  Google Scholar 

  • Jolly WT (1982) Progressive metamorphism of komatiites and related Archaean lavas of the Abitibi area, Canada. In: Arndt NT, Nisbet EG (eds) Komatiites. George Allen and Unwin, London, pp 245–266

    Google Scholar 

  • Kinzler RJ, Grove TL (1985) Crystallization and differentiation of Archean komatiite lavas from northeast Ontario: phase equilibrium and kinetic studies. Am Mineral 70:40–51

    Google Scholar 

  • Lahaye Y, Arndt NT (1996) Alteration of a komatiitic flow: Alexo, Ontario, Canada. J Petrol 37:1261–1284. doi:10.1093/petrology/37.6.1261

    Article  Google Scholar 

  • LaTourrette T, Wasserburg GJ, Fahey AJ (1996) Self diffusion of Mg, Ca, Ba, Nd, Yb, Ti, Zr, and U in haplobasaltic melt. Geochim Cosmochim Acta 60(8):1329–1340. doi:10.1016/0016-7037(96)00015-4

    Article  Google Scholar 

  • Latypov RM (2003) The origin of marginal compositional reversals in basic-ultrabasic sills and layered intrusions by soret fractionation. J Petrol 44(9):1579–1618. doi:10.1093/petrology/egg050

    Article  Google Scholar 

  • Lesher CE, Walker D (1988) Cumulate maturation and melt migration in a temperature gradient. J Geophys Res 93:10295–10311. doi:10.1029/JB093iB09p10295

    Article  Google Scholar 

  • Lesher CE, Walker D (1991) Thermal diffusion in petrology. In: Ganguly J (ed) Diffusion, atomic ordering, and mass transport; selected topics in geochemistry. Springer, New York, pp 396–451

    Google Scholar 

  • Lofgren GE, Donaldson CH (1975) Curved branching crystals and differentiation in comb-layered rocks. Contrib Mineral Petrol 274:243–273

    Google Scholar 

  • McDonough WF, Danyushevsky LV (1995) Water and sulfur contents of melt inclusions from Archean komatiites. EOS 76:266

    Google Scholar 

  • Naldrett AJ, Mason GD (1968) Contrasting Archaean ultramafic igneous bodies in Dundonald and Clerque Townships, Ontario. J Can Earth Sci 5:111–143

    Google Scholar 

  • Nisbet EG (1982) The tectonic setting and petrogenesis of komatiites. In: Arndt NT, Nisbet EG (eds) Komatiites. George Allen and Unwin, London, pp 501–520

    Google Scholar 

  • Nisbet EG, Arndt NT, Bickle MJ, Cameron WE, Chauvel C, Cheadle M, Hegner E, Kyser TK, Martin A, Renner R, Roedder E (1987) Uniquely fresh 2.7 Ga komatiites from the Belingwe greenstone belt, Zimbabwe. Geology 15:1147–1150. doi:10.1130/0091-7613(1987)15<1147:UFGKFT>2.0.CO;2

    Article  Google Scholar 

  • Parman S, Dann J, Grove TL, de Wit MJ (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 150:303–323. doi:10.1016/S0012-821X(97)00104-0

    Article  Google Scholar 

  • Parman S, Grove TL, Dann J (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys Res Lett 28:2513–2516. doi:10.1029/2000GL012713

    Article  Google Scholar 

  • Parman SW, Shimizu N, Grove TL (2003) Constraints on the pre-metamorphic trace element composition of Barberton komatiites from ion probe analyses of preserved clinopyroxene. Contrib Mineral Petrol 144:383–396

    Google Scholar 

  • Parman S, Grove TL, Dann J, de Wit MJ (2004) A subduction origin for komatiites and cratonic lithospheric mantle. S Afr J Geol 107:107–118. doi:10.2113/107.1-2.107

    Article  Google Scholar 

  • Pyke DR, Naldrett AJ, Eckstrand OR (1973) Archean ultramafic flows in Munro Township, Ontario. Geol Soc Am Bull 84:955–978. doi:10.1130/0016-7606(1973)84<955:AUFIMT>2.0.CO;2

    Article  Google Scholar 

  • Schott J (1983) Thermal diffusion and magmatic differentiation: a new look at an old problem. Bull Mineralogy 106:247–262

    Google Scholar 

  • Schwandt CS, McKay GA (1998) Rare earth element partition coefficients from enstatite/melt synthesis experiments. Geochim Cosmochim Acta 62:2845–2848. doi:10.1016/S0016-7037(98)00233-6

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Shimizu KT, Komiya S, Maruyama S, Hirose K (2001) Water content of melt inclusion in Cr-spinel of 2.7 Ga komatiite from Belingwe Greenstone Belt, Zimbabwe. Earth Planet Sci Lett 78:750

    Google Scholar 

  • Shimizu K, Nakamura E, Maruyama S (2005) The geochemistry of ultramafic to mafic volcanics from the Belingwe Greenstone Belt, Zimbabwe: magmatism in an Archean continental large igneous province. J Petrol 46(11):2367–2394. doi:10.1093/petrology/egi059

    Article  Google Scholar 

  • Shore M, Fowler AD (1999) The origin of spinifex texture in komatiites. Nature 397(6721):691–694. doi:10.1038/17794

    Article  Google Scholar 

  • Sobolev AV, Migdisov AA, Portnyagin MV (1996) Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus. Petrology 4(3):307–317

    Google Scholar 

  • Stone WE, Jensen LS, Church WR (1987) Petrography and geochemistry of an unusual Fe-rich basaltic komatiite from Boston Township, northeastern Ontario. Can J Earth Sci 24:2537–2550

    Google Scholar 

  • Turner JS, Huppert HE, Sparks RSJ (1986) Komatiites II: experimental and theoretical investigations of post-emplacement cooling and crystallization. J Petrol 27:397–437

    Google Scholar 

  • Walker D, Jurewicz S, Watson EB (1988) Adcumulus dunite growth in a laboratory thermal gradient. Contrib Mineral Petrol 99(3):306–319

    Article  Google Scholar 

  • Wilson AH (2003) A new class of silica enriched, highly depleted komatiites in the southern Kaapvaal Craton, South Africa. Precambrian Res 127:125–141. doi:10.1016/S0301-9268(03)00184-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Bouquain.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouquain, S., Arndt, N.T., Hellebrand, E. et al. Crystallochemistry and origin of pyroxenes in komatiites. Contrib Mineral Petrol 158, 599–617 (2009). https://doi.org/10.1007/s00410-009-0399-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0399-0

Keywords

Navigation