Skip to main content
Log in

Origin and U–Pb dating of zircon-bearing nepheline syenite xenoliths preserved in basaltic tephra (Massif Central, France)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Zircon-bearing xenoliths in continental basalts are often interpreted as witnesses of the continental basement uplifted during volcanic eruptions. Nevertheless, their origin is still debated. The Devès basaltic plateau belongs to the alkaline volcanic province of the French Massif Central. In few outcrops, zircon-bearing nepheline syenite xenoliths were preserved. U–Pb dating of the zircon crystals define an age of 956 ± 11 kyr constraining the crystallisation time of the zircons and consequently of the host xenoliths. This age, together with mineral chemistry arguments lead us to conclude that these minerals do not derive from a continental protolith. Rather, they likely result from the crystallisation of a liquid characterised by a nepheline–felspar composition and produced by the differentiation of a basaltic magma or, alternatively, by the low degree partial melting of a metasomatised lithospheric mantle. Such alkaline sialic rock and xenoliths may occur in large volumes at depth and generate the large amounts of zircon megacrysts discovered worldwide in secondary deposits within continental basaltic provinces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aspen P, Upton BGJ, Dickin AP (1990) Anorthoclase, sanidine and associated megacrysts in Scottish alkali basalts: high-pressure syenitic debris from upper mantle sources? Eur J Mineral 2:503–517

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Google Scholar 

  • Blanc Y, Mergoil-Daniel J, Tempier P (1973) Decouverte de néphéline en mégacristaux et enclaves à néphéline et anorthose dans les projections volcaniques du Devès (Haute Loire) France. Bull Soc Fr Mineral Cristallogr 96:388–391

    Google Scholar 

  • Boivin P (1982) Interactions entre magmas basaltiques et manteau supérieur. Ph.D. thesis, Clermont-Ferrand University, France, 344 p

  • Carbonnel JP, Robin C (1972) Les zircons-gemmes dans les roches ignées basiques: le gisement d’Espaly (Haute Loire, France). Rev Geogr Phys Geol Dyn 14:159–170

    Google Scholar 

  • Carbonnel JP, Duplaix S, Selo M (1973) Géochronologie par traces de fission des zircons et par K/Ar des andesites basaltiques d’Espaly (Haute Loire, France). Contrib Mineral Petrol 40:215–224. doi:10.1007/BF00373786

    Article  Google Scholar 

  • Chazot G, Bertrand H, Mergoil J, Sheppard SMF (2003) Mingling of immiscible dolomite carbonatite and trachyte in tuffs from Massif Central (France). J Petrol 44:1917–1936

    Article  Google Scholar 

  • Coenraads RR, Vichit P, Sutherland FL (1995) An unusual sapphire–zircon–magnetite xenolith from the Chantburi Gem Province, Thailand. Mineral Mag 59:465–479. doi:10.1180/minmag.1995.059.396.08

    Article  Google Scholar 

  • Coltorti M, Grégoire M (2008) Metasomatism in oceanic and continental lithospheric mantle: introduction. Geol Soc Lond Spec Pub 293:1–9

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (ed) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 469–499

  • Crowley JL, Schoene B, Bowring SA (2007) U-Pb dating of zircon in the Bishop Tuff at the millenial scale. Geology 35:1123–1126

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1963) Rock forming minerals. In: Framework silicates. Longmans, London, pp 232–270

  • Faujas de Saint Fond B (1778) Recherche sur les volcans éteints du Vivarais et du Velay. Cuchet J (ed) Grenoble, Paris, 460 p

  • Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon group minerals. In: Hanchar JM, Hoskin PWO (ed) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 1–26

  • Forestier FH (1993) Histoire de l’un des gisements de gemmes le plus anciennement connu d’Europe occidentale: saphirs, grenats et hyacynthes du Puy en Velay (43) le Riou Pezzoulliou, commune d’Espaly St Marcel. In: Les Cahiers de la Haute Loire (Ed) France, pp 81–148

  • Förster HJ (2006) Composition and origin of intermediate solid solutions in the system thorite–xenotime-zircon–coffinite. Lithos 88:35–55. doi:10.1016/j.lithos.2005.08.003

    Article  Google Scholar 

  • Frezzoti ML, Touret JLR, Neumann ER (2002) Ephemeral carbonate melts in the upper mantle. Eur J Mineral 14:891–904. doi:10.1127/0935-1221/2002/0014-0891

    Article  Google Scholar 

  • Garnier V, Ohnenstetter D, Giuliani G, Fallick AE, Phan Trong T, Hoang Quang V, Pham Van L, Schwarz D (2005) Age and genesis of sapphires from the basaltic province of Dak Nong, Southern Vietnam. Mineral Mag 69:21–38. doi:10.1180/0026461056910233

    Article  Google Scholar 

  • Guo J, O’Reilly SY, Griffin WL (1996) Zircon inclusions in corundum megacrysts. I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts. Geochim Cosmochim Acta 60:2347–2363. doi:10.1016/0016-7037(96)00084-1

    Article  Google Scholar 

  • Haggerty SE (1981) Opaque mineral oxides in terrestrial igneous rocks. In: Rumble D (ed) Oxide minerals. Reviews in mineralogy, vol 3. Mineralogical Society of America, Washington, pp 101–277

  • Hamilton DL (1961) Nepheline as crystallization temperature indicators. J Geol 69:321–329

    Article  Google Scholar 

  • Hamilton DL, MacKenzie WS (1960) Nepheline solid solution in the system NaAlSiO4–KAlSiO4–SiO2. J Petrol 1:56–72

    Google Scholar 

  • Hanchar JM, Watson EB (2003) Zircon saturation thermometry. In: Hanchar JM, Hoskin PWO (ed) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 89–112

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircons: synthesis and REE and phosphorus doping. Am Mineral 86:667–680

    Google Scholar 

  • Hée A, Flesh L (1957) Age absolu apparent des zircons d’Espaly (Haute Loire). Compte R Acad Sci Paris 244:1796–1798

    Google Scholar 

  • Hinton RW, Upton BGJ (1991) The chemistry of zircons and coexisting phases from alkali basat xenoliths and a syenite. Geochim Cosmochim Acta 55:3287–3302. doi:10.1016/0016-7037(91)90489-R

    Article  Google Scholar 

  • Hogarth DD (1977) Classification and nomenclature of the pyrochlore group. Am Mineral 62:403–410

    Google Scholar 

  • Hoskin PWO, Shaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis In: Hanchar JM, Hoskin PWO (ed) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 27–62

  • Irving AJ (1984) Polybaric mixing and fractionation of alkalic magmas: evidence from megacryst suites. Eos Trans AGU 65:1153

    Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69. doi:10.1016/j.chemgeo.2004.06.017

    Article  Google Scholar 

  • Lacombe P (1967) Le massif basaltique de Ratanakiri (Cambodge) et ses gisements de zircon-gemmes, son substratum, sa place en Indochine et dans le monde. Ph.D. thesis, Clermont-Ferrand University, France, 340 p

  • Lacroix A (1890) Sur l’origine du zircon et du corindon de la Haute Loire et sur les enclaves de gneiss et de granulites des roches volcaniques du Plateau central. Bull Soc Fr Mineral 13:100–106

    Google Scholar 

  • Lacroix A (1901) Zircon. In: Béranger, vol 3. Minéralogie de la France, Paris, pp 206–217

  • Le Bas MJ, Le Maitre RW, Streikeisen A, Zanettin B (1986) IUGS subcommission on the systematics of igneous rocks. J Petrol 27:745–750

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas J, Bonin B, Bateman G, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (eds) (2002) Igneous rocks: a classification and glossary of terms recommended of the IUGS Subcommission on the systematics of the igneous rocks. Cambridge University Press, Cambridge, 236 p

  • Ludwig KR (1993) Pbdat: a computer program for processing Pb-U-Th isotope data, version 1.24. US Geological survey open-file report 88-542, 32 p

  • Ludwig KR (2001) User manual for Isoplot/Ex rev. 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no 1a, Berkeley, 56 p

  • Lumpkin GR, Ewing RC (1996) Geochemical alteration of pyrochlore group minerals: betafite subgroup. Am Mineral 81:1237–1248

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Mergoil J, Boivin P (1993) Le Velay, son volcanisme et les formations associées. BRGM, Géologie de la France 3, pp 3–96

  • Monchoux P, Fontan F, De Parseval P, Martin RF, Wang RC (2006) Igneous albitite dikes in orogenic lherzolites, western Pyrénées, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. I. Mineralogical associations. Can Mineral 44:817–842. doi:10.2113/gscanmin.44.4.817

    Article  Google Scholar 

  • Mumpton FA, Roy R (1961) Hydrothermal stability studies of the zircon–thorite group. Geochim Cosmochim Acta 21:217–238. doi:10.1016/S0016-7037(61)80056-2

    Article  Google Scholar 

  • Normand M (1973) Le volcanisme de la bordure sud-orientale du Devès et du Plateau d’Alleyrac (Velay occidental). Ph.D. thesis, Université Paris VI, France, 225 p

  • Paquette JL, Pin C (2001) A new miniaturized extraction chromatography method for precise U−Pb zircon geochronology. Chem Geol 176:313–321. doi:10.1016/S0009-2541(00)00408-3

    Article  Google Scholar 

  • Parrish RR (1987) An improved micro-capsule for zircon dissolution in U–Pb geochronology. Chem Geol 66:99–102

    Google Scholar 

  • Pin C, Paquette JL, Monchoux P, Hammouda T (2001) First field-scale occurrence of Si–Al–Na-rich low-degree partial melt from the upper mantle. Geology 29:451–454. doi:10.1130/0091-7613(2001)029<0451:FFSOOS>2.0.CO;2

    Article  Google Scholar 

  • Pin C, Monchoux P, Paquette JL, Azambre B, Wang RC, Martin RF (2006) Igneous albitite dikes in orogenic lherzolites, western Pyrénées, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. II. Geochemical and petrogenetic considerations. Can Mineral 44:843–856. doi:10.2113/gscanmin.44.4.843

    Article  Google Scholar 

  • Pupin JP (1976) Signification des caractères morphologiques des zircons communs des roches en pétrologie. Base de la méthode typologique. Applications. Ph.D. thesis, Université de Nice, France, 394 p

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204. doi:10.1016/0012-821X(84)90114-6

    Article  Google Scholar 

  • Schiano P, Clocchiati R (1994) Worldwide occurrence of silica-rich melts in sub-continental and sun-oceanic mantle minerals. Nature 368:621–624

    Article  Google Scholar 

  • Schmitt AK (2006) Laacher See revisited: high-spatial-resolution zircon dating indicates rapid formation of a zoned magma chamber. Geology 34:597–600. doi:10.1130/G22533.1

    Article  Google Scholar 

  • Sláma J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse M (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Smith JV (1974) Intimate feldspar intergrowths. In: Smith JV (ed) Feldspar minerals, chemical and textural properties. Springer, Berlin, pp 399–519

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Sutherland FL, Hoskin PWO, Fanning CM, Coenrads (1998) Models of corundum origin from alkali basaltic terrains: a reappraisal. Contrib Mineral Petrol 133:356–372. doi:10.1007/s004100050458

  • Sutherland FL, Bosshart G, Fanning CM, Hoskin PWO, Coenraads RR (2002) Sapphire crystallization, age and origin, Ban–Huai Sai, Laos: age based on zircon inclusions. J Asian Earth Sci 20:841–849. doi:10.1016/S1367-9120(01)00067-0

    Article  Google Scholar 

  • Tera F, Wasserburg G (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304. doi:10.1016/0012-821X(72)90128-8

    Article  Google Scholar 

  • Upton BGJ, Hinton RW, Aspen P, Finch A, Valley JW (1999) Megacrysts and associated xenoliths: evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland. J Petrol 40:935–956. doi:10.1093/petrology/40.6.935

    Article  Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404. doi:10.1007/s004100050492

    Article  Google Scholar 

  • Wass SY (1980) Geochemistry and origin of xenolith-bearing and related alkali basaltic rocks from the southern highlands, New South Wales, Australia. Am J Sci A 280:639–666

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304. doi:10.1016/0012-821X(83)90211-X

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli A, Von Quadt A, Roddick W, Spiegel W (1995) Three natural zircon standards for U–Yh–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23. doi:10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  • Wolf JA, Toney JB (1993) Trapped liquid from a nepheline syenite: a re-evaluation of Na-, Zr-, F-rich interstitial glass in a xenolith from Tenerife, Canary islands. Lithos 29:285–293. doi:10.1016/0024-4937(93)90022-5

    Article  Google Scholar 

  • Wright TL (1968) An X-ray method for determining the composition and structural state from measurement of 2θ values for three reflections. Am Mineral 53:88–104

    Google Scholar 

  • Wright TL, Stewart DB (1968) Determination of composition and structural state from refined unit-cell parameters and 2 V. Am Mineral 53:38–87

    Google Scholar 

Download references

Acknowledgments

We thank D. Prelevic (Johannes Gutenberg–Universität Mainz, Germany), A.K. Schmitt (Department of Earth and Space Sciences, UCLA, USA) and F. Poitrasson (LMTG, CNRS, Toulouse, France) for their helpful and constructive comments. We are grateful to J.L. Piro and J.L. Devidal (LMV, Clermont-Ferrand) for their efficiency in the acquisition of complementary data by LA-ICPMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Paquette.

Additional information

Communicated by F. Poitrasson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paquette, JL., Mergoil-Daniel, J. Origin and U–Pb dating of zircon-bearing nepheline syenite xenoliths preserved in basaltic tephra (Massif Central, France). Contrib Mineral Petrol 158, 245–262 (2009). https://doi.org/10.1007/s00410-009-0380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0380-y

Keywords

Navigation