Skip to main content

Advertisement

Log in

Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are used to evaluate estimates of primitive mantle compositions; they indicate Mg#PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities and mainly consists of residues after low-degree melt extraction at 1–3 GPa. However, accessory (<1%) amphibole and phlogopite are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin of mantle peridotites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Badarch G, Cunningham WD, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21:87–110

    Article  Google Scholar 

  • Barry TL, Kent RW (1998) Cenozoic magmatism in Mongolia and the origin of central and east Asian basalts. In: Flower MJF, Chung S-L, Lo C-H, Lee TY (eds) Mantle dynamics and plate interactions in East Asia. Amer Geophys Union Geodynamics Series 27, Washington, pp 347–366

  • Barry TL, Saunders AD, Kempton PD, Windley BF, Pringle MS, Dorjnamjaa D, Saandar S (2003) Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. J Petrol 44:55–91

    Article  Google Scholar 

  • Bodinier JL (1988) Geochemistry and petrogenesis of the Lanzo peridotite body, western Alps. Tectonophysics 149:67–88

    Article  Google Scholar 

  • Bodinier J-L, Godard M (2003) Orogenic, ophiolitic and abyssal peridotites. In: Carlson RW (ed) Treatise on Geochemistry. The mantle and core, vol 2. Elsevier, Amsterdam, pp 103–170

  • Bodinier JL, Dupuy C, Dostal J (1988) Geochemistry and petrogenesis of Eastern Pyrenean peridotites. Geochim Cosmochim Acta 52:2893–2907

    Article  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Article  Google Scholar 

  • Boyd FR, Mertzman SA (1987) Composition and structure of the Kaapvaal lithosphere, Southern Africa. In: Mysen BO (ed) Magmatic processes: physicochemical principles. Geochem Soc Spec Publ, vol 1, pp 3–12

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 128:228–246

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers J Petrol 31:1353–1378

    Google Scholar 

  • Cunningham WD (2001) Cenozoic normal faulting and regional doming in the southern Hangay region, Central Mongolia: implications for the origin of the Baikal rift province. Tectonophysics 331:389–411

    Article  Google Scholar 

  • Delvaux D, Moeys R, Stapel G, Melnikov A, Ermikov V (1995) Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part I. Palaeozoic and Mesozoic pre-rift evolution. Tectonophysics 252:61–101

    Article  Google Scholar 

  • Fleet ME, Stone WE (1990) Nickeliferous sulfides in xenoliths, olivine megacrysts and basaltic glass. Mineral Petrol 105:629–636

    Article  Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Article  Google Scholar 

  • Genshaft YS, Klimenko GV, Saltykovsky AY, Ageeva LI (1990) New data on the composition and age of Cenozoic volcanics in Mongolia (in Russian). Trans (Doklady) USSR Acad Sci Earth Sci Sect 311:420–424

    Google Scholar 

  • Hart SR, Zindler A (1986) In search of a bulk-Earth composition. Chem Geol 57:247–267

    Article  Google Scholar 

  • Hervig RL, Smith JV (1982) Temperature-dependent distribution of Cr betwen olivine and pyroxenes in lherzolite xenoliths. Contrib Mineral Petrol 81:184–189

    Article  Google Scholar 

  • Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45:2507–2530

    Article  Google Scholar 

  • Ionov DA (1986) Spinel peridotite xenoliths from the Shavaryn–Tsaram volcano, northern Mongolia: petrography, major element chemistry and mineralogy. Geol Carpath 37:681–692

    Google Scholar 

  • Ionov D (2002) Mantle structure and rifting processes in the Baikal-Mongolia region: geophysical data and evidence from xenoliths in volcanic rocks. Tectonophysics 351:41–60

    Article  Google Scholar 

  • Ionov DA (2004) Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet facies upper mantle. J Petrol 45:343–367

    Article  Google Scholar 

  • Ionov DA, Hofmann AW (1995) Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 131:341–356

    Article  Google Scholar 

  • Ionov DA, Borisovsky SE, Kovalenko VI, Ryabchikov ID (1983) Micas from mantle nodules in alkali basalts from Mongolia. Trans (Doklady) USSR Acad Sci Earth Sci Sect 269:1189–1192

    Google Scholar 

  • Ionov DA, Borisovsky SE, Kovalenko VI, Ryabchikov ID (1984) First find of amphibole in mantle xenoliths in alkali basalts from Mongolia (in Russian). Trans (Doklady) USSR Acad Sci 276:238–242

    Google Scholar 

  • Ionov DA, Ashchepkov IV, Stosch H-G, Witt-Eickschen G, Seck HA (1993) Garnet peridotite xenoliths from the Vitim volcanic field, Baikal region: the nature of the garnet-spinel peridotite transition zone in the continental mantle. J Petrol 34:1141–1175

    Google Scholar 

  • Ionov DA, Hofmann AW, Shimizu N (1994) Metasomatism-induced melting in mantle xenoliths from Mongolia. J Petrol 35:753–785

    Google Scholar 

  • Ionov DA, O’Reilly SY, Griffin WL (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184

    Article  Google Scholar 

  • Ionov DA, O’Reilly SY, Griffin WL (1998) A geotherm and lithospheric cross-section for central Mongolia. In: Flower MJF, Chung S-L, Lo C-H, Lee TY (eds) Mantle dynamics and plate interactions in East Asia. Amer Geophys Union Geodynamics Ser 27, Washington, DC, pp 127–153

  • Ionov DA, Bodinier J-L, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. J Petrol 43:2219–2259

    Article  Google Scholar 

  • Ionov DA, Ashchepkov I, Jagoutz E (2005a) The provenance of fertile off-craton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chem Geol 217:41–75

    Article  Google Scholar 

  • Ionov DA, Chanefo I, Bodinier J-L (2005b) Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites. Contrib Mineral Petrol 150:335–353

    Article  Google Scholar 

  • Ionov DA, Prikhodko VS, Bodinier J-L, Sobolev AV, Weis D (2005c) Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik. Contrib Mineral Petrol 149:647–665

    Article  Google Scholar 

  • Ionov DA, Hofmann AW, Merlet C, Gurenko AA, Hellebrand E, Montagnac G, Gillet P, Prikhodko VS (2006) Discovery of whitlockite in mantle xenoliths: inferences for water- and halogen-poor fluids and trace element residence in the terrestrial upper mantle. Earth Planet Sci Lett 244:201–217

    Article  Google Scholar 

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci 280-A:389–426

    Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wänke H (1979) The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Geochim Cosmochim Acta suppl 11, 2 (Proc Lunar Planet Sci Conf 10th), pp 2031–2050

  • Jahn B-m, Windley B, Natal’in B, Dobretsov N (2004) Phanerozoic continental growth in Central Asia. J Asian Earth Sci 23:599–603

    Article  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg J (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4:43–47

    Article  Google Scholar 

  • Kaeser B, Kalt A, Pettke T (2006) Evolution of the lithospheric mantle beneath the Marsabit volcanic field (northern Kenya): constraints from textural, P-T and geochemical studies on xenoliths. J Petrol 47:2149–2184

    Article  Google Scholar 

  • Kepezhinskas VV (1979) Cenozoic alkaline basaltoids of Mongolia and their deep-seated inclusions (in Russian). Nauka, Moscow, pp 312

    Google Scholar 

  • Klemme S, O’Neill HSC (2000) The effect of Cr on the solubility of Al in orthopyroxene: experiments and thermodynamic modelling. Contrib Mineral Petrol 140:84–98

    Article  Google Scholar 

  • Köhler TP, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54:2375–2388

    Article  Google Scholar 

  • Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK, Salnikova EB, Larin AM (2004) Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. J Asian Earth Sci 23:605–627

    Article  Google Scholar 

  • Lee C-T, Rudnick RL (1999) Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths the Labait volcano, Tanzania. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international Kimberlite conference, vol 1. RedRoof design, Cape Town, pp 503–521

  • Li C, Ripley EM, Mathez EA (2003) The effect of S on the partitioning of Ni between olivine and silicate melt in MORB. Chem Geol 201:295

    Article  Google Scholar 

  • Liu X, O’Neill HSC (2004) The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2-Cr2O3 at 1.1 GPa. J Petrol 45:2261–2286

    Article  Google Scholar 

  • McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101:1–18

    Article  Google Scholar 

  • McDonough WF, Frey FA (1989) Rare earth elements in upper mantle rocks. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Mineral Soc Amer, Washington, pp 99–145

    Google Scholar 

  • McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McInnes BIA, Gregoire M, Binns RA, Herzig PM, Hannington MD (2001) Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet Sci Lett 188:169–183

    Article  Google Scholar 

  • Nickel KG, Green DH (1984) The nature of the upper-most mantle beneath Victoria, Australia as deduced from ultramafic xenoliths. In: Kornprobst J (ed) Kimberlites II. The Mantle and Crust-Mantle relationships. Elsevier, Amsterdam, pp 161–178

    Google Scholar 

  • Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73:158–170

    Article  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Niu Y, Langmuir CH, Kinzler RJ (1997) The origin of abyssal peridotites: a new perspective. Earth Planet Sci Lett 152:251–265

    Article  Google Scholar 

  • O’Neill HSC, Palme H (1998) Composition of the silicate Earth: implications for accretion and core formation. In: Jackson I (ed) The Earth’s Mantle: structure, composition and evolution—the Ringwood volume. Cambridge University Press, Cambridge, pp 3–126

    Google Scholar 

  • O’Reilly SY, Griffin WL (1988) Mantle metasomatism beneath Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta 52:433–447

    Article  Google Scholar 

  • Palme H, Nickel KG (1985) Ca/Al ratio and composition of the Earth’s mantle. Geochim Cosmochim Acta 49:2123–2132

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2003) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) Treatise on Geochemistry. The mantle and core, vol 2. Elsevier, Amsterdam, pp 1–38

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on Geochemistry. The mantle and core, vol 2. Elsevier, Amsterdam, pp 171–276

  • Petit C, Déverchère J, Calais E, San’kov V, Fairhead D (2002) Deep structure and mechanical behavior of the lithosphere in the Hangai-Hövsgöl region, Mongolia: new costraints from gravity modeling. Earth Planet Sci Lett 197:133–149

    Article  Google Scholar 

  • Press S, Witt G, Seck HA, Eonov DA, Kovalenko VI (1986) Spinel peridotite xenoliths from the Tariat Depression, Mongolia. I Major element chemistry and mineralogy of a primitive mantle xenolith suite. Geochim Cosmochim Acta 50:2587–2599

    Article  Google Scholar 

  • Priestley K, Debayle E, McKenzie D, Pilidou S (2006) Upper mantle structure of eastern Asia from multimode surface waveform tomography. J Geophys Res 111. doi:10.1029/2005JB004082

  • Qi Q, Taylor LA, Zhou X (1995) Petrology and geochemistry of mantle peridotite xenoliths from SE China. J Petrol 36:55–79

    Google Scholar 

  • Sachtleben T, Seck HA (1981) Chemical control of Al-solubility in orthopyroxene and its implications on pyroxene geothermometry. Contrib Mineral Petrol 78:157–165

    Article  Google Scholar 

  • Simon NSC, Irvine GJ, Davies GR, Pearson DG, Carlson RW (2003) The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71:289–322

    Article  Google Scholar 

  • Smith D (2000) Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisons. J Geophys Res 105:16769–16781

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Spettel B, Palme H, Ionov DA, Kogarko LN (1991) Variations in the iridium content of the upper mantle of the Earth. Lunar Planet Sci Conf XXII:1301–1302

    Google Scholar 

  • Stosch H-G, Seck HA (1980) Geochemistry and mineralogy of two spinel peridotite suites from Dreiser Weiher, West Germany. Geochim Cosmochim Acta 44:457–470

    Article  Google Scholar 

  • Stosch H-G, Lugmair GW, Kovalenko VI (1986) Spinel peridotite xenoliths from the Tariat Depression, Mongolia. II: geochemistry and Nd and Sr isotopic composition and their implications for the evolution of the subcontinental lithosphere. Geochim Cosmochim Acta 50:2601–2614

    Article  Google Scholar 

  • Stosch H-G, Ionov DA, Puchtel IS, Galer SJG, Sharpouri A (1995) Lower crustal xenoliths from Mongolia and their bearing on the nature of the deep crust beneath central Asia. Lithos 36:227–242

    Article  Google Scholar 

  • Szabo C, Falus G, Zajacz Z, Kovacs I, Bali E (2004) Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics 393:119–137

    Article  Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Obata M (2000) Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process. Geochim Cosmochim Acta 64:695–716

    Article  Google Scholar 

  • Takazawa E, Okayasu T, Satoh K (2003) Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite (northern Fizh block). Geochem Geophys Geosyst 4. doi:10.1029/2001GC000232

  • Tapponier P, Molnar P (1979) Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baikal regions. J Geophys Res 84:3425–3459

    Article  Google Scholar 

  • Walter MJ (1999) Melting residues of fertile peridotite and the origin of cratonic lithosphere. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation. Spec Publ Geochem Soc 6, Houston, pp 225–239

    Google Scholar 

  • Walter MJ (2003) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) Treatise on Geochemistry. The mantle and core, vol 2. Elsevier, Amsterdam, pp 363–394

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Werling F, Altherr R (1997) Thermal evolution of the lithosphere beneath the French Massif Central as deduced from geothermobarometry on mantle xenoliths. Tectonophysics 275:119–141

    Article  Google Scholar 

  • Wiechert U, Ionov DA, Wedepohl KH (1997) Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle. Contrib Mineral Petrol 126:345–364

    Article  Google Scholar 

  • Windley BF, Allen MB (1993) Mongolian Plateau: evidence for a late Cenozoic mantle plume under central Asia. Geology 21:295–298

    Article  Google Scholar 

  • Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221:65–101

    Article  Google Scholar 

  • Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Mineral Petrol 106:431–439

    Article  Google Scholar 

  • Xu X, O’Reilly SY, Griffin WL, Zhou X (2000) Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. J Petrol 41:111–148

    Article  Google Scholar 

  • Xu Y-G, Menzies MA, Thirlwall MF, Huang X-L, Liu Y, Chen X-M (2003) “Reactive” harzburgites from Huinan, NE China: products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta 67:487–505

    Article  Google Scholar 

  • Yarmolyuk VV, Kovalenko VI, Ivanov VG, Samoylov VS (1995) Dynamics and magmatism of late Mesozoic-Cenozoic mantle hot spot, southern Khangai (Mongolia). Geotectonics 28:391–407

    Google Scholar 

  • Yaxley GM, Kamenetsky V (1999) In situ origin for glass in mantle xenoliths from southeastern Australia: insights from trace element compositions of glasses and metasomatic phases. Earth Planet Sci Lett 172:97–109

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

  • Zorin YA (1999) Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306:33–56

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to A. Hofmann, E. Takazawa and J.-L. Bodinier for support in Mainz, Niigata and Montpellier and thank T. Bradley, A. Friedrichsen, K. Furuta, N. Groschopf, A. Gurenko, D. Kuzmin, C. Lawson, C. Merlet, N. Pearson, A. Sobolev for analytical and technical assistance and advice. Altantsetseg, Boyar, Chimid, A. Goreglyad, W. Griffin, V. Kovalenko, S. O’Reilly participated in field work. The research was supported by funding from the Soviet-Mongolian Geologic Expedition (defunct), Australian Research Council (including Australian Research Fellowship and Grants to DAI), Australian Academy of Sciences, Japan Society for the Promotion of Science, Max-Planck-Society (Germany) and French CNRS (UMR 5568 and 6524). I thank two anonymous reviewers and the editor for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri A. Ionov.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionov, D.A. Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia. Contrib Mineral Petrol 154, 455–477 (2007). https://doi.org/10.1007/s00410-007-0203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0203-y

Keywords

Navigation