Skip to main content
Log in

Fluid–rock interaction at a carbonatite-gneiss contact, Alnö, Sweden

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We evaluate balanced metasomatic reactions and model coupled reactive and isotopic transport at a carbonatite-gneiss contact at Alnö, Sweden. We interpret structurally channelled fluid flow along the carbonatite-gneiss contact at ∼640°C. This caused (1) metasomatism of the gneiss, by the reaction: \({\hbox{biotite} + \hbox{quartz} + \hbox{oligoclase} + \hbox{K}_{2} \hbox{O} +\,\hbox{Na}_{2}\hbox{O} \pm \hbox{CaO} \pm \hbox{MgO} \pm \hbox{FeO} = \hbox{albite} + \hbox{K-feldspar} + \hbox{arfvedsonite} + \hbox{aegirene-}\hbox{augite} + \hbox{H}_{2} \hbox{O} + \hbox{SiO}_{2}}\), (2) metasomatism of carbonatite by the reaction: calcite + SiO2 = wollastonite + CO2, and (3) isotopic homogenization of the metasomatised region. We suggest that reactive weakening caused the metasomatised region to widen and that the metasomatic reactions are chemically (and possibly mechanically) coupled. Spatial separation of reaction and isotope fronts in the carbonatite conforms to a chromatographic model which assumes local calcite–fluid equilibrium, yields a timescale of 102–104 years for fluid–rock interaction and confirms that chemical transport towards the carbonatite interior was mainly by diffusion. We conclude that most silicate phases present in the studied carbonatite were acquired by corrosion and assimilation of ijolite, as a reactive by-product of this process and by metasomatism. The carbonatite was thus a relatively pure calcite–H2O−CO2–salt melt or fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen T (1996) Sr, Nd and Pb isotopic data of the Alnö complex 22nd Nordic Geological Winter Meeting, Abstract, vol 11

  • Bailey DK (1974) Nephelinites and ijolites. In: Sörensen H (ed) The alkaline rocks. Wiley, New York, p 622

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, Amsterdam

    Google Scholar 

  • Bickle MJ, Baker J (1990) Advective-diffusive transport of isotopic fronts: an example from Naxos, Greece. Earth Planet Sci Lett 97:78–93

    Article  Google Scholar 

  • Brögger (1921) Die Eruptivgesteine des Kristianiagebietes, IV. Das Fengebiet in Telemark, Norwegen Vidensk Selsk Skrift I, Mat-Naturv Klasse, 9

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forserite, magnetite and calcite: applications to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Article  Google Scholar 

  • Church AA, Jones AP (1995) Silicate-carbonate immiscibility at Oldoinyo Lenagi. J Petrol 36:869–889

    Google Scholar 

  • Eckermann H (1948) The alkaline district of Alnö Island. Sver Geol Unders Ca 36:1–176

    Google Scholar 

  • Einaudi MT, Burt DM (1982) Introduction; terminology, classification, and composition of skarn deposits. Econ Geol 77:745–754

    Article  Google Scholar 

  • Ferry JM, Dipple GM (1991) Fluid flow, mineral reactions, and metasomatism. Geology 19:211–214

    Article  Google Scholar 

  • Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65

    Article  Google Scholar 

  • Haynes EA, Moecher DP, Spicuzza MJ (2003) Oxygen isotope composition of carbonates, silicates, and oxides in selected carbonatites; constraints on crystallization temperatures of carbonatite magmas. Chem Geol 193:43–57

    Article  Google Scholar 

  • Hode Vuorinen J, Skelton ADL (2004) Origin of silicate minerals in carbonatites—in situ crystallisation or wall rock contamination? Terra Nova 16:210–215

    Article  Google Scholar 

  • Hode Vuorinen J, Hålenius U, Whitehouse MJ, Mansfeld J, Skelton ADL (2005) Compositional variations (major and trace elements) of clinopyroxene and Ti-andradite from pyroxenite, ijolite and nepheline syenite, Alnö Island, Sweden. Lithos 81:55–77

    Article  Google Scholar 

  • Hoffbauer R, Hoernes S, Fiorentini E (1994) Oxygen isotope thermometry based on a refined increment method and its application to granulite–grade rocks from Sri Lanka. In: Raith M, Hoernes S (eds), Tectonic, metamorphic and isotopic evolution of deep crustal rocks, with special emphasis on Sri Lanka. Precambrian Res 66:199–220

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–344

    Article  Google Scholar 

  • Jaeger JC (1968) Cooling and solidification of igneous rocks. In: Hess HH, Poldervaart A (eds), Basalts, the poldervaart treatise on rocks of basaltic composition. Wiley, New York, pp 503–537

    Google Scholar 

  • Kramm U (1994) Isotope evidence for ijolite formation by fenitization: Sr–Nd data of ijolites from the type locality Iivaara. Finl Contrib Mineral Petrol 115:279–286

    Article  Google Scholar 

  • Kresten P (1979) The Alnö complex: discussion of the main features, bibliography and excursion guide Nordic Carbonatite Symposium, pp 67

  • Kresten P (1980) The Alnö complex; tectonics of dyke emplacement. Lithos 13:153–158

    Article  Google Scholar 

  • Kresten P, Morogan V (1986) Fenitization at the Fen complex, southern Norway. Lithos 19:27–42

    Article  Google Scholar 

  • Krynicki K, Green CD, Sawyer DW (1979) Pressure and temperature dependence of self-diffusion in water. Faraday Discuss Chem Soc 66:199–208

    Article  Google Scholar 

  • Lapidus L, Amundson NR (1952) Mathematics of adsorption in beds. IV. The effect of longitudinal diffusion in ion exchange and chromatographic columns. J Phys Chem 56:984–998

    Article  Google Scholar 

  • Macaulay CI, Fallick AE, Haszeldine RS, Graham CM (2000) Methods of laser-based stable isotope measurement applied to diagenetic cements and hydrocarbon reservoir quality. Clay Minerals 35:313–322

    Article  Google Scholar 

  • Morogan V, Lindblom S (1995) Volatiles associated with the alkaline—carbonatite magmatism at Alnö, Sweden: a study of fluid and solid inclusions in minerals from the Långarsholmen ring complex. Contrib Mineral Petrol 122:262–274

    Article  Google Scholar 

  • Morogan V, Woolley AR (1988) Fenitization at the Alnö carbonatite complex, Sweden: distribution, mineralogy and genesis. Contrib Mineral Petrol 100:169–182

    Article  Google Scholar 

  • Pak TM, Hauzenberger CA, Baumgartner LP (2003) Solubility of the assemblage albite+K-feldspar+andalusite+quartz in supercritical aqueous chloride solutions at 650 degrees C and 2 kbar. Chem Geol 200:377–393

    Article  Google Scholar 

  • Plas L van der, Tobi AC (1965) A chart for judging the reliability of point counting results. Am J Sci 263:87–90

    Article  Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios in silicates and oxides. Geochim Cosmochim Acta 54:811–822

    Article  Google Scholar 

  • Sindern S, Kramm U (2000) Volume characteristics and element transfer of fenite aureoles: a case study from the Iivaara alkaline complex. Lithos 51:75–93

    Article  Google Scholar 

  • Sokolova NT, Khodakovskiy IL (1977) The mobility of aluminium in hydrothermal systems. Geochem Int 14:105–112

    Google Scholar 

  • Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contrib Mineral Petrol 19:1–71

    Article  Google Scholar 

  • Taylor HP, Frechen J, Degens RT (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany, and the Alnö district, Sweden. Geochim Cosmochim Acta 31:407–430

    Article  Google Scholar 

  • Verschure RH, Maijer C (2005) A new Rb–Sr isotopic parameter for metasomatism, Δt, and its application in a study of pluri-fenitized gneisses around the Fen ring complex, South Norway. NGU Bull 445:45–71

    Google Scholar 

Download references

Acknowledgments

This project was supported by Stockholm University and Stiftelsen Lars Hiertas Minne. Klara Hajnal is thanked for analytical work. Colin Graham is thanked for useful discussions about some of the ideas presented in this study. Tom Andersen, Rainer Abart and Ian Parsons are thanked for constructive input on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Skelton.

Additional information

Communicated by J. Hoefs.

Appendices

Appendix 1: Table of symbols, recurring in this manuscript

Symbol

Description

Units

C f

Concentration of the tracer in the fluid at z

 

C s

Concentration of the tracer in the solid at z

 

Cs,1, Cs,2

Concentrations of the tracer in the solid upstream and downstream of the front

 

K V

Fluid solid partition coefficient by volume

 

ρ

Density

gcm−3

T

Time

s

z

Distance

m

zp.b.

Position of the pinned boundary

m

X j (ork)

Modal% of reactant mineral j (or product mineral k)

 

nj (ork)

Number of moles of reactant mineral j (or product mineral k) per unit volume of rock

mol m−3

N I

Metasomatic addition (positive) or subtraction (negative) of component I per unit volume of rock

mol m−3

[i]j (ork)

Molar proportion of component i in reactant mineral j (or product mineral k)

 

N

Modal% of rock involved in the reaction

 

ξ

Reaction progress

 

ϕ

Porosity

 

ω

Fluid velocity

m s−1

ω ϕ

Fluid flux rate

m3 m−2 s−1

ωϕ·t

Time-integrated volumetric fluid flux

m3   m−2 (or m)

D f

Diffusivity in the fluid

m2 s−1

τ

Tortuosity

 

\({{\sqrt {{D}_{\rm f} \varphi {\tau} \cdot {\hbox{t}}}}}\)

Characteristic length scale of diffusion

m

Appendix 2: Parameterisation of goodness-of-fit

The goodness-of-fit is parameterised by R 2 a . This is the adjusted coefficient of multiple determination, which is given by:

$$\begin{aligned} R^{2} &= 1 - \frac{{{\sum\limits_{i = 1}^n {{\left({y_{i} - y{\left({z_{i};\omega \varphi \cdot t,{\sqrt {D_{{\rm f}} \varphi \tau \cdot t}},z_{{{\rm p.b}}}.} \right)}} \right)}^{2}}}}}{{{\sum\limits_{i = 1}^n {{\left({y_{i} - \bar{y}} \right)}^{2}}}}} \\ R^{2}_{\rm a} &= \frac{{{\left({n - 1} \right)} R^{2} - k}}{{n - 1 - k}} \\ \end{aligned} $$

for equation (4) rewritten as (7), with k = number of regression parameters, n = number of data points and \({{\sum\limits_{i = 1}^n {{\left({y_{i} - \bar{y}} \right)}^{2}}}}\) = total variation of parameter y. R 2a is the fraction of the variance in y which is explained by the model, y(z i; ωϕ·t, \({{\sqrt {D_{{\rm f}} \varphi \tau \cdot t}}},\) z p.b.) and can vary between 0 and 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skelton, A., Hode Vuorinen, J., Arghe, F. et al. Fluid–rock interaction at a carbonatite-gneiss contact, Alnö, Sweden. Contrib Mineral Petrol 154, 75–90 (2007). https://doi.org/10.1007/s00410-007-0180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0180-1

Keywords

Navigation