Skip to main content
Log in

Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important?

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We need to understand chemical recycling at convergent margins and how chemical interactions between subducted slab and the overlying mantle wedge affect mantle evolution and magmagenesis. This requires distinguishing contributions from recycled individual subducted components as well as those contributed by the mantle. We do this by examining magmatic products generated at different depths above a subduction zone, in an intra-oceanic arc setting. The Guguan cross-chain in the intra-oceanic Mariana arc overlies subducted Jurassic Pacific plate lithosphere at depths of ~125--230 km and erupts mostly basalt. Basalts from rear-arc volcanoes are more primitive than those from the magmatic front, in spite of being derived by lower degrees of melting of less-depleted mantle. Rear-arc magmas also show higher temperatures and pressures of equilibration. Coexisting mineral compositions become more MORB- or OIB-like with increasing height above the subduction zone. Trace element and isotopic variations indicate that the subduction component in cross-chain lavas diminishes with increasing depth to the subduction zone, except for water contents. There is little support for the idea that melting beneath the Mariana Trough back-arc basin depleted the source region of arc magmas, but melting to form rear-arc volcanoes may have depleted the source of magmatic front volcanoes. Enrichments in rear-arc lavas were not caused by sediment melting; the data instead favor an OIB-type mantle that has been modestly affected by subduction zone fluids. Our most important conclusion is that sediment fluids or melts are not responsible for the K--h relationship and other cross-chain chemical and isotopic variations. We speculate that an increasing role for supercritical fluids released from serpentinites interacting with modestly enriched mantle might be responsible for cross-chain geochemical and isotopic variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allan JF, Batiza R, Lonsdale PF (1987) Petrology and chemistry of lavas from seamounts flanking the East Pacific Rise Axis, 21°N: implications concerning the mantle source composition for both Seamount and Adjacent EPR lavas. In: Keating B, Fryer P, Batiza R (eds) Seamounts, islands, and atolls, vol 43. American Geophysical Union, Geophysical Monograph, Washington, DC, pp 255–282

  • Balhaus CG, Berry RF, Green DH (1991) High presure calibration of the olivine--orthopyroxene--spinel oxygen barometer, implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Breddam K (2002) Kistufell: primitive melt from the Iceland mantle plume. J Petrol 43:345–373

    Article  Google Scholar 

  • BSVP (1981a) Island arc basalts. In: BSVP (ed) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, pp 193–213

  • BSVP (1981b) Ocean intraplate volcanism. In: BSVP (ed) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, pp 161–192

  • BSVP (1981c) Ocean-floor basaltic volcanism. In: BSVP (ed) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, pp 132–160

  • Cameron BI, Walker JA, Carr MJ, Patino LC, Matias O, Feigenson MD (2002) Flux versus decompression melting in stratovolcanoes in southeastern Guatemala. J Volcanol Geotherm Res 119:21–50

    Article  Google Scholar 

  • Conder JA, Wiens DA, Morris J (2002) On the decompression melting structure at volcanic arcs and back-arc spreading centers. Geophys Res Lett 29(15):1727. DOI 1710.1029/2002GL015390

    Google Scholar 

  • Conrey RM, Sherrod DR, Hooper PR, Swanson DA (1997) Diverse primitive magmas in the Cascade Arc, northern Oregon and southern Washington. Can Mineral 35:367–396

    Google Scholar 

  • Davis AS, Clague DA (1987) Geochemistry, mineralogy, and petrogenesis of basalt form the Gorda Ridge. J Geophys Res 92:10476–10483

    Google Scholar 

  • Dickinson WR (1975) Potash-depth (K-h) relations in continental margins and intra-oceanic magmatic Arcs. Geology 3:53–56

    Article  Google Scholar 

  • Dixon TH, Batiza R (1979) Petrology and geochemistry of recent lavas in the Northern Marianas. Contrib Mineral Petrol 70:167–181

    Article  Google Scholar 

  • Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory, vol 138. American Geophysical Union, Geophysical Monograph, Washington DC, pp 23–45

  • Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res B102:14,991–915,019

    Google Scholar 

  • Engdahl ER, van der Hilst RD, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743

    Google Scholar 

  • England P, Engdahl R, Thatcher W (2004) Systematic variation in the depths of slabs beneath arc volcanoes. Geophys J Int 156:377–408

    Article  Google Scholar 

  • Fabriés J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69:329–336

    Article  Google Scholar 

  • Ford CE, Russell DG, Craven JA, Fisk MR (1983) Olivine--liquid equilibria: temperature, pressure and compositional dependance of the crystal/liquid cation partition coefficients. J Petrol 24:256–265

    Google Scholar 

  • Fryer P, Gill JB, Jackson MC (1997) Volcanologic and tectonic evolution of the Kasuga seamounts, northern Mariana Trough: Alvin submersible investigations. J Volcanol Geotherm Res 79:277–311

    Article  Google Scholar 

  • Gaetani GA, Grove TL (2003) Experimental constraints on melt generation in the mantle wedge. In: Eiler J (ed) Inside the subduction factory, vol 138. American Geophysical Union, Geophysical Monograph, Washington DC, pp 107–134

  • Garcia MO, Pietruska AJ, Rhodes JM, Swanson K (2000) Magmatic processes during the prolonged Puu Oo eruption of Kilauea Volcano, Hawaii. J Petrol 41:967–990

    Article  Google Scholar 

  • Gribble RF, Stern RJ, Newman S, Bloomer SH, O’Hearn T (1998) Chemical and isotopic composition of lavas from the Northern Mariana Trough: implications for magmagenesis in back-arc basins. J Petrol 39:125–154

    Article  Google Scholar 

  • Hart SR (1984) A large scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hatherton T, Dickinson WR (1969) The relationship between andesitic volcanism and seismicity in Indonesia. J Geophys Res 74(22):5301–5310

    Article  Google Scholar 

  • Hickey-Vargas R (1998) Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: an assessment of local versus large-scale processes. J Geophysical Research 103(B9):20963–20979

    Article  Google Scholar 

  • Hochstaedter A, Gill J, Peters R, Broughton P, Holden P, Taylor B (2001) Across-arc geochemical trends in the Izu-Bonin arc: contributions from the subducting slab. Geochem, Geophys, Geosyst 2:2000GC000105

  • Hochstaedter AG, Gill JB, Taylor B, Ishizuka O (2000) Across-arc geochemical trends in the Izu-Bonin arc: constraints on source composition and mantle melting. J Geophys Res 105(B1):495–512

    Article  Google Scholar 

  • Hochstaedter AG, Kepezhinskas P, Defant M, Drummond M, Koloskov A (1996) Insights intto the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. J Geophys Res 101(B1):697–712

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Ishihara T, Stern RJ, Fryer P, Bloomer S, Becker NC (2001) Seafloor spreading in the Southern Mariana Trough inferred from 3-component magnetometer data. EOS 82(47):F1202

    Google Scholar 

  • Ishikawa T, Tera F (1999) Two isotopically distinct fluid components involved in the Mariana Arc; evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics. Geology 27:83–86

    Article  Google Scholar 

  • Ishizuka O, Taylor RN, Milton JA, Nesbitt RW (2003) Fluid-mantle interaction in an intra-oceanic arc: constraints from high-precision Pb isotopes. Earth Planet Sci Lett 211:211–236

    Article  Google Scholar 

  • Iwamori H (1998) Transportation of H2O and melting in subduction zones. Earth Planet Sci Lett 160:65–80

    Article  Google Scholar 

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1:Paper number 199GC000014

  • Kato T, Bevan J, Matsushima T, Kotake Y, Camacho JT, Nakao S (2003) Geodetic evidence of back-arc spreading in the Mariana Trough. Geophys Res Lett 30(12). DOI 10.1029/2002GL016757, 012003

  • Kelley KA (2002) Subducted fluid and sediment compositions preserved in Mariana Arc melt inclusions (abstract). EOS Trans Am Geophys Union 83(47)

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Article  PubMed  Google Scholar 

  • Kincaid C, Sacks IS (1997) Thermal and dynamical evolution of the upper mantle in subduction zones. J Geophys Res 102(B6):12295–212315

    Article  Google Scholar 

  • Köhler TP, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54:2375–2388

    Article  Google Scholar 

  • Lin PN, Stern RJ, Bloomer SH (1989) Shoshonitic volcanism in the Northern Mariana Arc. 2. Large-ion lithophile and rare earth element abundances: evidence for the source of incompatible element enrichments in intraoceanic arcs. J Geophys Res 94:4497–4514

    Article  Google Scholar 

  • Machida S, Ishii T (2003) Backarc volcanism along the en echelon seamounts: the Enpo seamount chain in the northern Izu-Oasawara arc. Geochem Geophys Geosyst 4(4). 9006. DOI 9010.1029/2003GC000554

    Google Scholar 

  • Manton WI (1988) Separation of Pb from young zircons by single-bead ion exchange. Chem Geol 73:147–152

    Google Scholar 

  • Martinez F, Fryer P, Baker NA, Yamazaki T (1995) Evolution of backarc rifting: Mariana Trough, 20°--24°N. J Geophys Res 100:3807--3827

    Article  Google Scholar 

  • Martinez F, Taylor B (2003) Controls on back-arc crustal accretion: insights from the Lau, Manus and Mariana basins. In: Larter RD, Leat PT (eds) Intra-oceanic subduction systems: teconic and magmatic processes, vol 219. Geological Society, Special Publications, London, pp 19–54

  • McCulloch MT, Gamble AJ (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Article  Google Scholar 

  • Meijer A, Reagan M (1981) Petrology and geochemistry of the Island of Sarigan in the Mariana Arc: calc-alkaline volcanism in an oceanic setting. Contrib Mineral Petrol 77:337–354

    Article  Google Scholar 

  • Newman S, Stolper E, Stern RJ (2000) H2O and CO2 in magmas from the Mariana arc and back arc system. Geochem Geophys Geosyst 1, paper no: 1999GC000027

  • Niu Y, Batiza R (1994) Magmatic processes at a slow spreading ridge segment: 26°S Mid-Atlantic Ridge. J Geophys Res 99:19719–19740

    Article  Google Scholar 

  • O’Donnell TH, Presnall DC (1980) Chemical variations of the glass and mineral phases in basalts deredged from 25°–30°N along the Mid-Atlantic Ridge. Am J Sci 280:845–868

    Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subduction oceanic mantle? Geology 29:299–302

    Article  Google Scholar 

  • Peacock SM, Hyndman RD (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys Res Lett 26:2517–2520

    Article  Google Scholar 

  • Pearce JA, Kempton PD, Nowell GM, Noble SR (1999) Hf--Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. J Petrol 40:1579–1611

    Article  Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem Geophys Geosyst 6(7). DOI 10.1029/2004GC000895

  • Perfit MR, Fornari DJ (1983) Geochemical studies of abyssal lavas recovered by DSRV ALVIN from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift. J Geophys Res 88:10530–10550

    Article  Google Scholar 

  • Pier JG, Podosek FA, Luhr JF, Brannon JC, Aranda-Gomez JJ (1989) Spinel-lherzolite-bearing quaternary volcanic centers in San Luis Potosi, Mexico, 2 Sr and Nd isotopic systematics. J Geophys Res B94:7941–7951

    Article  Google Scholar 

  • Plank T, Langmuir C (1998) The chemical composition of subducting sediment and its consequence for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Plank T, Langmuir CH (1988) An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett 90:349–370

    Article  Google Scholar 

  • Plank T, Langmuir CH (1993) Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362:739–742

    Article  Google Scholar 

  • Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kb. Contrib Mineral Petrol 123:92–108

    Article  Google Scholar 

  • Putirka K, Mikaelian H, Ryerson FJ, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic evolved and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain. Am Mineral 88:1542–1554

    Google Scholar 

  • Putrika K (1999) CPX + Liquid equilibria. Contrib Mineral Petrol 135:151–163

    Article  Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  PubMed  Google Scholar 

  • Roeder PL, Campbell JH, Jamieson HE (1979) A re-evaluation of the olivine-spinel geothermometer. Contrib Mineral Petrol 68:325–334

    Article  Google Scholar 

  • Ryan J, Morris J, Bebout G, Leeman B (1996) Describing chemical fluxes in subduction zones: insights from ``Depth=Profiling” Studies of arc and forearc rocks. In: Bebout G, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom, Geophysical Monograph 96. AGU, Washington DC, pp 263–268

  • Rüpke LH, Phipps-Morgan J, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Stern RJ, Fouch MJ, Klemperer S (2003) An overview of the Izu-Bonin-Mariana subduction factory. In: Eiler J, Hirschmann M (eds) Inside the subduction factory, vol 138. AGU Monograph, Washington DC, pp 175–222

  • Stern RJ, Jackson MC, Fryer P, Ito E (1993) O, Sr, Nd, and Pb isotopic composition of the Kasuga cross-chain in the Mariana Arc: a new perspective on the K-H relationship. Earth Planet Sci Lett 119:459–475

    Article  Google Scholar 

  • Tamura Y, Tatsumi Y, Zhaob D, Kidoa Y, Shukunoa H (2002) Hot fingers in the mantle wedge: new insights into magma genesis in subduction zones. Earth Planet Sci Lett 197:105–116

    Article  Google Scholar 

  • Tatsumi Y (2003) Some constraints on arc magma genesis. In: Eiler J (ed) Inside the subduction factory, vol 138. American Geophysical Union, Geophysical Monograph, Washington DC, pp 277–292

  • Tatsumi Y, Murasaki M, Nohda S (1992) Across-arc variation of lava chemistry in the Izu-Bonin Arc: identification of subduction components. J Volcanol Geotherm Res (49):179–190

  • Taylor RN, Nesbitt RW (1998) Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth Planet Sci Lett 164:79–98

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarede F (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Söderlund U, Baker M (2004) Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochem Geophys Geosyst 5(11). DOI 10.1029/2004GC000721

  • Wagner TP, Donnelly-Nolan JM, Grove TL (1995) Evidence of hydrous differentiation and crystal accumulation in the low-MgO, high-Al2O3 basalt from Medicine Lake volcano, California. Contrib Mineral Petrol 121:201–216

    Article  Google Scholar 

  • Woodhead J, Eggins S, Gamble J (1993) High field strength and transition element systematics in island arc and back-arc basin basalts; evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet Sci Lett 114:491–504

    Article  Google Scholar 

  • Woodhead JD (1989) Geochemistry of the Mariana arc (western Pacific): source compositions and processes. Chem Geol 76:1–24

    Article  Google Scholar 

  • Woodhead JD, Eggins SM, Johnson RW (1998) Magma genesis in the New Britain island arc: further insights into melting and mass transfer processes. J Petrol 39:1041–1068

    Article  Google Scholar 

  • Woodhead JD, Fraser DG (1985) Pb, Sr, and 10Be isotopic studies of volcanic rocks from the Northern Mariana Islands. Implications for magma genesis and crustal recycling in the Western Pacific. Geochim Cosmochim Acta 49:1925–1930

    Article  Google Scholar 

  • Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001) Hafnium isotope evidence for `conservative’ element mobility during subduction zone processes. Earth Planet Sci Lett 192:331–346

    Article  Google Scholar 

  • Woodhead JD, Johnson RW (1993) Isotopic and trace-element profiles across the New Britain island arc, Papua New Guinea. Contrib Mineral Petrol 113:479–491

    Article  Google Scholar 

  • Yamasaki T, Seno T (2003) Double seismic zone and dehyration embrittlement of the subducting slab. J Geophys Res 108(B4). DOI 10.1029/2002JB001918, 002003

    Google Scholar 

Download references

Acknowledgments

The analytical assistance of Nate Miller at UTD is greatly appreciated. We thank J. Ryan and W. Leeman for their comments. We appreciate information about water contents in glass inclusions determined by Alison Shaw and Erik Hauri (DTM). We thank the two anonymous reviewers for their thoughtful criticism. This work was supported by NSF grants OCE 0001827 and OCE 0405651 to RJS and OCE-137365 and EAR-0230145 to Vervoort. This is UTD Geosciences contribution #1075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Stern.

Additional information

Editorial Responsibility: T. L. Grove

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, R.J., Kohut, E., Bloomer, S.H. et al. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important?. Contrib Mineral Petrol 151, 202–221 (2006). https://doi.org/10.1007/s00410-005-0055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0055-2

Keywords

Navigation