Skip to main content

Advertisement

Log in

Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

High-pressure melting experiments were performed at ~26 GPa and ~2,200–2,400°C on synthetic peridotite compositions with varying FeO and Al2O3 contents and on a synthetic CI chondrite analogue composition. Peridotite liquids show a crystallisation sequence of ferropericlase (Fp) followed down temperature by Mg-silicate perovskite (MgPv) + Fp, which contrasts a sequence of MgPv followed by MgPv + Fp observed in the chondritic composition. The difference in crystallisation sequence is a consequence of the different bulk Mg/Si ratios. MgPv/melt partition coefficients for major, minor and trace elements were determined by electron microprobe and secondary ion mass spectrometry. Partition coefficients of tri- and tetravalent elements increase with increasing Al concentration in MgPv. A lattice strain model indicates that Al3+ substitutes predominantly onto the Si-site in MgPv, whereas most elements substitute onto the Mg-site, which is consistent with a charge-compensating coupled substitution mechanism. MgPv/melt partition coefficients for Mg (DMg) and Si (DSi) are related to the melt Mg/Si ratio such that DSi becomes lower than DMg at low Mg/Si melt ratios. We use a crystal fractionation model, based on upper mantle refractory lithophile element ratios, to constrain the amount of MgPv and Ca-silicate perovskite (CaPv) that could have fractionated during a Hadean magma ocean event and could still be present as a chemically distinct heterogeneity in the lower mantle today. We show that a fractionated crystal pile composed of 96% MgPv and 4% CaPv could comprise up to 13 wt% of the entire mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agee CB (1990) A new look at differentiation of the Earth from melting experiments on the Allende meteorite. Nature 346:834–837

    Article  Google Scholar 

  • Agee CB, Li J, Shannon MC, Circone S (1995) Pressure–temperature phase diagram for the Allende meteorite. J Geophys Res 100, B9:17725–17740

    Article  Google Scholar 

  • Akber-Knutson S, Bukowinski MST (2004) The energetics of aluminium solubility into MgSiO3 perovskite at lower mantle conditions. Earth Planet Sci Lett 220:317–330

    Article  Google Scholar 

  • Allan NL, Du ZM, Lavrentiev MY, Blundy JD, Purton JA, van Westrenen W (2003) Atomistic simulation of mineral-melt trace-element partitioning. Phys Earth Planet Inter 139:93–111

    Google Scholar 

  • Allegre CJ, Poirier JP, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515–526

    Article  Google Scholar 

  • Andrault D (2003) Cation substitution in MgSiO3 perovskite. Phys Earth Planet Inter 136:67–78

    Article  Google Scholar 

  • Asahara Y, Kubo T, Kondo T (2004) Phase relations of a carbonaceous chondrite at lower mantle conditions. Phys Earth Planet Inter 143–144:421–432

    Article  Google Scholar 

  • Beattie P, Drake M, Jones J, Leeman W, Longhi J, McKay G, Nielsen R, Palme H, Shaw D, Takahashi E, Watson B (1993) Terminology for trace-element partitioning. Geochim Cosmochim Acta 57:1605–1606

    Google Scholar 

  • Blundy JD, Wood BJ (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  CAS  Google Scholar 

  • Blundy JD, Falloon TJ, Wood BJ, Dalton JA (1995) Sodium partitioning between clinopyroxene and silicate melts. J Geophys Res 100 B8:15,501–15,515

    Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge, UK, pp 551

    Google Scholar 

  • Corgne A, Wood BJ (2002) CaSiO3 and CaTiO3 perovskite-melt partitioning of trace elements: Implications for gross mantle differentiation. Geophys Res Lett 29(19):1903, DOI: 10.1029/2001GL014398

  • Corgne A, Allan NL, Wood BJ (2003) Atomistic simulations of trace element incorporation into the large site of MgSiO3 and CaSiO3 perovskites. Phys Earth Planet Inter 139:113–127

    Google Scholar 

  • Corgne A, Liebske C, Wood BJ, Frost DJ, Rubie DC (2004) Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim Cosmochim Acta (in press)

  • Drake MJ, McFarlane EA, Gasparik T, Rubie DC (1993) Mg-perovskite/silicate melt and majorite garnet/silicate melt partition coefficients in the system CaO–MgO–SiO2 at high temperatures and pressures. J Geophys Res 98(E3):5427–5431

    Google Scholar 

  • Frost DJ, Langenhorst F (2002) The effect of Al2O3 on Fe–Mg partitioning between magnesiowüstite and magnesium silicate perovskite. Earth Planet Sci Lett 199:227–241

    Article  Google Scholar 

  • Frost DJ, Liebske C, Langenhorst F, McCammon CA, Tronnes RG, Rubie DC (2004) Experimental evidence for the existence of Fe-rich metal in Earth’s lower mantle. Nature 428:409–412

    Article  Google Scholar 

  • Gasparik T (1996) Melting experiments on the enstatite–diopside join at 70–224 kbar, including the melting of diopside. Contrib Mineral Petrol 124:139–153

    Article  Google Scholar 

  • Hill E, Wood BJ, Blundy JD (2000) The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53:203–215

    Article  CAS  Google Scholar 

  • van der Hilst RD, Karason H (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: toward a hybrid convection model. Science 283:1885–1888

    Article  Google Scholar 

  • Hinton RW, Upton BGJ (1991) The chemistry of zircon—variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302

    Article  CAS  Google Scholar 

  • Hirose K, Shimizu N, van Westrenen W, Fei Y (2004) Trace element partitioning in Earth’s lower mantle and implications for geochemical consequences of partial melting at the core–mantle boundary. Phys Earth Planet Inter 146:249–260

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  CAS  Google Scholar 

  • Ito E, Kubo A, Katsura T, Walter MJ (2004) Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys Earth Planet Inter 143–144:397–406

    Article  Google Scholar 

  • Kato T, Ringwood AE, Irifune T (1988a) Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation in the mantle. Earth Planet Sci Lett 89:123–145

    Article  Google Scholar 

  • Kato T, Ringwood AE, Irifune T (1988b) Constraints on element partition coefficients between MgSiO3 perovskite and liquid determined by direct measurements. Earth Planet Sci Lett 90:65–68

    Article  Google Scholar 

  • Kato T, Ohtani E, Ito Y, Onuma K (1996) Element partitioning between silicate perovskite and calcic ultrabasic melt. Phys Earth Planet Inter 96:201–207

    Article  Google Scholar 

  • Kellogg LH, Hager BH, van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881–1884

    Article  Google Scholar 

  • Kröger FA, Vink HJ (1956) Relation between the concentration of imperfections in crystalline solids. Solid State Phys 3:307–435

    Google Scholar 

  • Lauterbach S, McCammon CA, van Aken P, Langenhorst F, Seifert F (2000) Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component of the lower mantle. Contrib Mineral Petrol 138:17–26

    Google Scholar 

  • McCammon C (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387:694–696

    Article  Google Scholar 

  • McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  CAS  Google Scholar 

  • McFarlane EA, Drake MJ, Rubie DC (1994) Element partitioning between Mg-perovskite, magnesiowüstite, and silicate melt at conditions of the Earth’s mantle. Geochim Cosmochim Acta 58:5161–5172

    Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • O’Neill SC, Palme H (1998) Composition of the silicate Earth: implication for accretion and core formation. In: Jackson I (ed) The earth’s mantle: compositions, structure, and evolution. Cambridge University Press, Cambridge, UK, pp 3–182

    Google Scholar 

  • Presnall DC, Weng YH, Milholland CS, Walter MJ (1998) Liquidus phase relations in the system MgO–MgSiO3 at pressures up to 25 GPa—constraints on crystallisation of molten Hadean mantle. Phys Earth Planet Inter 107:83–95

    Article  Google Scholar 

  • Richmond NC, Brodholt JP (1998) Calculated role of aluminum in the incorporation of ferric iron into magnesium silicate perovskite. Am Mineral 83:947–951

    Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and Moon. Springer, Berlin Heidelberg New York, p 295

    Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:Q05004, DOI:10.1029/2003GC000597

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Stebbins JF, Kroeker S, Andrault D (2001) The mechanism of solution of aluminum oxide in MgSiO3 perovskite. Geophys Res Lett 28:615–618

    Article  Google Scholar 

  • Taura H, Yurimoto H, Kato T, Sueno S (2001) Trace element partitioning between silicate perovskites and ultracalic melt. Phys Earth Planet Inter 124:25–32

    Article  Google Scholar 

  • Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98 (E3):5319–5333

    Google Scholar 

  • Trønnes RG (2000) Melting relations and major element partitioning in an oxidized bulk Earth model composition at 15–26 GPa. Lithos 53:233–245

    Article  Google Scholar 

  • Trønnes RG, Frost DJ (2002) Peridotite melting and mineral-melt partitioning of major and minor elements at 22–24.5 GPa. Earth Planet Sci Lett 197:117–131

    Article  Google Scholar 

  • Walter MJ, Nakamura E, Trønnes R, Frost DJ (2004) Experimental constraints on crystallization differentiation in a deep magma ocean. Geochim Cosmochim Acta 68:4267–4284

    Google Scholar 

  • van Westrenen W, Wood BJ, Blundy JD (2001) A predictive thermodynamic model of garnet-melt trace element partitioning. Contrib Mineral Petrol 142:219–234

    Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Article  Google Scholar 

  • Wood BJ, Rubie DC (1996) The effect of alumina on phase transformations at the 660-kilometer discontinuity from Fe–Mg partitioning experiments. Science 273:1522–1524

    Google Scholar 

  • Yamamoto T, Yuen DA, Ebisuzaki T (2003) Substitution mechanism of Al ion in MgSiO3 perovskite under high pressure conditions from first-principles calculations. Earth Planet Sci Lett 206:617–625

    Article  Google Scholar 

  • Zhang J, Herzberg C (1994) Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J Geophys Res 99 (B9):17729–17742

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Heinz Fischer, Hubert Schulze, Georg Herrmannsdörfer and Detlef Krausse for technical support. We greatly acknowledge assistance during ion microprobe analysis by R. W. Hinton and J. Craven at University of Edinburgh. C.L. is grateful for support by the German Science Foundation (DFG, project, Fr 1555/01). A.C. acknowledges receipt of a Postgraduate Scholarship from the University of Bristol. We would like to thank Reidar Trønnes and Wim van Westrenen for very helpful and constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Liebske.

Additional information

W. Schreyer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebske, C., Corgne, A., Frost, D.J. et al. Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts. Contrib Mineral Petrol 149, 113–128 (2005). https://doi.org/10.1007/s00410-004-0641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0641-8

Keywords

Navigation