Skip to main content

Advertisement

Log in

Dihedral angle measurements and infiltration property of SiO2-rich melts in mantle peridotite assemblages

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Petrological and experimental studies demonstrated that nepheline-normative, SiO2-rich melts can be present in the upper mantle at pressures ≤1.5 GPa. To evaluate the role of such melts in mantle processes and magma genesis, we carried out two types of experiments: (1) melt distribution experiments to characterize the grain-scale distribution of a small fraction of typical SiO2-rich mantle melt (SRMM) in polycrystalline olivine (Ol) at 1,180°C, 1.2 GPa; and (2) an infiltration experiment to test the ability of SRMM to impregnate and metasomatise neighbouring non-molten mantle rocks. The median dihedral angles at Ol-Ol-SRMM contacts are equal to ≈50°, implying that melt should be interconnected at all melt fractions. Complications arise, however, in the investigated system because Ol–liquid interfacial energy is anisotropic, and we estimate that the connectivity threshold in the SRMM–Ol system is ≈0.3 vol%. Regarding the very low volume fraction of SRMM in peridotites, we conclude that these melts either occur as isolated pockets or form a network of grain edge channels with a low degree of connectivity due to a large number of dry grain edges. Even in the case where an interconnected network exists, their large viscosities should prohibit the extraction of SRMM from peridotite sources. The infiltration experiment also points to a very reduced mobility of SRMM in the upper mantle. In this experiment, a slice of synthetic dunite was immersed into a magma reservoir made of 60 wt% SRMM+40 wt% Ol, and subjected to 1,180°C-1.2 GPa for 113 h: despite this long duration, the SiO2-rich liquid was unable to infiltrate measurably the dunite. Our experiments do not support the hypothesis that SRMM represent agents of mantle metasomatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a,b
Fig. 5
Fig. 6a,b
Fig. 7a–d

Similar content being viewed by others

References

  • Albarede F, Provost A (1977) Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis Comp Geosci 3:309–326

    Google Scholar 

  • Baker DR (1992) Estimation of diffusion coefficients during interdiffusion of geologic melts: application of transition state theory. Chem Geol 98:11–21

    Article  CAS  Google Scholar 

  • Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375:308–311

    Article  CAS  Google Scholar 

  • Baker MB, Hirschmann MM, Wasylenki LE, Stolper EM, Ghiorso MS (1996) Quest for low-degree mantle melts. Nature 381:286

    Article  CAS  Google Scholar 

  • von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res 91:9261–9276

    Google Scholar 

  • von Bargen N, Waff HS (1988) Wetting of enstatite by basaltic melt at 1,350°C and 1.0- to 2.5-GPa pressure. J Geophys Res 93:1153–1158

    Google Scholar 

  • Bottinga Y, Weill DF (1969) Density of liquid silicate systems calculated from molar volumes of oxyde components. Am J Sci 269:169–182

    Google Scholar 

  • Brenan JM (1993) Diffusion of chlorine in fluid-bearing quartzite: effects of fluid composition and total porosity. Contrib Miner Petrol 115:215–224

    CAS  Google Scholar 

  • Bulau JR, Waff HS, Tyburczy JA (1979) Mechanical and thermodynamical constraints on fluid distribution in partial melts. J Geophys Res 84:6102–6108

    Google Scholar 

  • Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204:339–360

    Article  Google Scholar 

  • Cmíral M, Fitz Gerald JD, Faul UH, Green DH (1998) A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study. Contrib Miner Petrol 130:336–345

    Article  Google Scholar 

  • Daines MJ, Kohlstedt DL (1993) A laboratory study of melt migration. Phil Trans R Soc Lond A 342:43–52

    CAS  Google Scholar 

  • Draper DS (1992) Spinel lherzolite xenoliths from Lorena Butte, Simcoe Mountains, southern Washington (USA). J Geol 100:766–776

    CAS  Google Scholar 

  • Draper DS, Green TH (1997) P-T phase relations of silicic, alkaline, aluminous mantle xenolith glasses under anhydrous and C-O-H fluid saturated conditions. J Petrol 38:1187–1224

    Article  CAS  Google Scholar 

  • Draper DS, Green TH (1999) P-T phase relations of silicic, alkaline, aluminous liquids: new results and applications to mantle melting and metasomatism. Earth Planet Sci Lett 170:255–268

    Article  CAS  Google Scholar 

  • Faul UH (2001) Melt detention and segregation beneath mid-ocean ridges. Nature 410:920–923

    Article  CAS  PubMed  Google Scholar 

  • Frank CF (1968) Two-component flow model for convection in the Earth’s upper mantle. Nature 220:350–352

    Google Scholar 

  • Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38:1023–1059

    Article  CAS  Google Scholar 

  • Fujii N, Osamura K, Takahashi E (1986) Effect of water saturation on the distribution of partial melt in the olivine-pyroxene-plagioclase system. J Geophys Res 91:9253–9259

    CAS  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Miner Petrol 131:323–346

    Article  CAS  Google Scholar 

  • Gleason GC, Bruce V, Green HW (1999) Experimental investigation of melt topology in partially molten quartzo-feldspathic aggregates under hydrostatic and non-hydrostatic stress. J Metamorphic Geol 17:705–722

    Article  CAS  Google Scholar 

  • Hammouda T, Laporte D (2000) Ultra-fast mantle impregnation by carbonatite melts. Geology 28:283–285

    Article  Google Scholar 

  • Hirschmann MM, Baker MB, Stolper EM (1998) Effect of alkalis on the silica content of mantle derived melts. Geochim Cosmochim Acta 62:883–902

    Article  CAS  Google Scholar 

  • Holtzman BK, Groebner NJ, Zimmerman ME, Ginsberg SB, Kohlstedt DL (2003) Stress-driven melt segregation in partially molten rocks. Geochem Geophys Geosyst 4. DOI 10.1029/2001GC000258

  • Jurewicz SR, Jurewicz AJG (1986) Distribution of apparent angles on random sections with emphasis on dihedral angle measurements. J Geophys Res 91:9277–9282

    Google Scholar 

  • Jurewicz SR, Watson EB (1984) Distribution of partial melt in a felsic system: the importance of surface energy. Contrib Miner Petrol 85:25–29

    CAS  Google Scholar 

  • Laporte D, Provost A (2000a) The grain scale distribution of silicate, carbonate and metallosulfide partial melts: a review of theory and experiments. In: Bagdassarov N, Laporte D, Thompson AB (eds) Physics and chemistry of partially molten rocks. Kluwer, Dordrecht, pp 93–140

  • Laporte D, Provost A (2000b) The equilibrium geometry of a fluid phase in a polycrystalline aggregate with anisotropic surface energies: dry grain boundaries. J Geophys Res 105:25937–25953

    Article  CAS  Google Scholar 

  • Laporte D, Watson EB (1995) Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chem Geol 124:161–184

    Article  CAS  Google Scholar 

  • Laporte D, Rapaille C, Provost A (1997) Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths. In: Bouchez JL, Hutton DH, Stephens WE (eds) Granites: from segregation of melt to emplacement fabrics. Kluwer, Amsterdam, pp 31–54

  • Laporte D, Toplis M, Seyler M, Devidal JL (2004) A new experimental technique for extracting liquids from peridotite at very low degrees of melting. Application to partial melting of depleted peridotite. Contrib Miner Petrol 146:463–484

    Article  CAS  Google Scholar 

  • McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765

    CAS  Google Scholar 

  • McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72

    Article  Google Scholar 

  • Minarik WG, Watson EB (1995) Interconnectivity of carbonate melt at low melt fraction. Earth Planet Sci Lett 133:423–437

    Article  Google Scholar 

  • Neumann ER, Wulff-Pedersen E (1997) The origin of highly silicic glass in mantle xenoliths from the Canary Islands. J Petrol 38:1513–1539

    Article  CAS  Google Scholar 

  • Park HH, Yoon DN (1985) Effect of dihedral angle on the morphology of grains in a matrix phase. Metal Trans 16:923–928

    Google Scholar 

  • Pin C, Paquette JL, Monchoux P, Hammouda T (2001) First field-scale occurrence of Si-Al-Na-rich low-degree partial melts from the upper mantle. Geology 29:451–454

    Article  CAS  Google Scholar 

  • Riegger OK, van Vlack LH (1960) Dihedral angle measurement. AIME Trans 218:933–935

    CAS  Google Scholar 

  • Riley GNJ, Kohlstedt DL (1991) Kinetics of melt migration in upper mantle-type rocks. Earth Planet Sci Lett 105:500–521

    Article  CAS  Google Scholar 

  • Robinson JAC, Wood BJ, Blundy JD (1998) The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet Sci Lett 155:97–111

    Article  CAS  Google Scholar 

  • Rutter EH (1997) The influence of deformation on the extraction of crustal melts : a consideration of the role of melt-assisted granular flow. In: Holness MB (ed) Deformation-enhanced fluid transport in the Earth’s crust and mantle. Chapman and Hall, London, pp 82–110

  • Rutter EH, Neumann DHK (1995) Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas. J Geophys Res 100:15697–15715

    Article  CAS  Google Scholar 

  • Schiano P, Bourdon B (1999) On the preservation of mantle information in ultramafic nodules: glass inclusions within minerals versus interstitial glasses. Earth Planet Sci Lett 169:173–188

    Article  CAS  Google Scholar 

  • Schiano P, Clocchiatti R (1994) World-wide occurrence of silica-rich melts trapped in sub-continental and sub-oceanic mantle minerals. Nature 368:621–624

    Article  CAS  Google Scholar 

  • Schiano P, Bourdon B, Clochiatti R, Massare D, Varela ME, Bottinga Y (1998) Low-degree partial melting trends recorded in upper mantle minerals. Earth Planet Sci Lett 160:537–550

    Article  CAS  Google Scholar 

  • Scott DR, Stevenson DJ (1986) Magma ascent by porous flow. J Geophys Res 91:9283–9296

    Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272:870–893

    CAS  Google Scholar 

  • Sleep NH (1988) Tapping of melt by veins and dykes. J Geophys Res 93:10255–10272

    Google Scholar 

  • Smith CS (1964) Some elementary principles of polycrystalline microstructure. Metall Rev 9:1–48

    CAS  Google Scholar 

  • Stevenson DJ (1986) on the role of surface tension in the migration of melts and fluids. Geophys Res Lett 13:1149–1152

    Google Scholar 

  • Stolper E (1980) A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib Miner Petrol 74:13–27

    CAS  Google Scholar 

  • Toramaru A, Fujii N (1986) Connectivity of melt phase in a partially molten peridotite. J Geophys Res 91:9239–9259

    CAS  Google Scholar 

  • Waff HS, Bulau JR (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic conditions. J Geophys Res 84:6109–6114

    Google Scholar 

  • Waff HS, Bulau JR (1982) Experimental determination of near-equilibrium textures in partially molten silicates at high pressures. In: Akimoto S, Manghnani MH (eds) High pressure research in geophysics. Adv Earth Planet Sci 12, Center for Academic Publication, Tokyo, pp 229–236

  • Waff HS, Faul UH (1992) Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts. J Geophys Res 97:9003–9014

    Google Scholar 

  • Walker D, Jurewicz S, Watson EB (1988) Adcumulus dunite growth in a laboratory thermal gradient. Contrib Miner Petrol 99:306–319

    CAS  Google Scholar 

  • Wark DA, Williams CA, Watson EB, Price JD (2003) Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. J Geophys Res (in press)

  • Watson EB (1982) Melt infiltration and magma evolution. Geology 10:236–240

    CAS  Google Scholar 

  • Yaxley GM, Kamenetsky V, Green DH, Falloon TJ (1997) Glasses in mantle xenoliths from western Victoria, Autralia, and their relevance to mantle processes. Earth Planet Sci Lett 148:433–446

    Article  CAS  Google Scholar 

  • Zinngrebe E, Foley SF (1995) Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contrib Miner Petrol 122:79–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ariel Provost for his mass-balance program, Jean-Luc Devidal, Michelle Veschambre, François Faure, and Bertrand Devouard for technical help and advice, and Tahar Hammouda for helpful comments. Olgeir Sigmarsson provided the basalt from Lanzarote. This manuscript was improved by the constructive reviews of Bruce Watson and an anonymous reviewer. The authors acknowledge the financial support provided by INSU-CNRS. Work supported in part by the European Community’s Human Potential Program under contract HPRN-CT-2002-00211, (Euromelt). Contribution INSU-CNRS no. 363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Maumus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maumus, J., Laporte, D. & Schiano, P. Dihedral angle measurements and infiltration property of SiO2-rich melts in mantle peridotite assemblages. Contrib Mineral Petrol 148, 1–12 (2004). https://doi.org/10.1007/s00410-004-0595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0595-x

Keywords

Navigation