Skip to main content
Log in

A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The authors report a redox profile based on Mössbauer data of spinel and garnet to a depth of 210 km from mantle xenoliths of the northern (N) and southeastern (SE) Slave craton (northern Canada). The profile transects three depth facies of peridotites that form segments of different bulk composition, represented by spinel peridotite, spinel–garnet peridotite, low-temperature garnet peridotite, high-temperature garnet peridotite, and pyroxenite. The shallow, more depleted N Slave spinel peridotite records lower oxygen fugacities compared to the deeper, less depleted N Slave spinel–garnet peridotite, consistent with their different spinel Fe3+ concentrations. Garnet peridotites show a general reduction in Δlog fO2 (FMQ)s with depth, where values for garnet peridotites are lower than those for spinel–garnet peridotites. There is a strong correlation between depletion and oxygen fugacity in the spinel peridotite facies, but little correlation in the garnet peridotite facies. The strong decrease in Δlog fO2 (FMQ) with depth that arises from the smaller partial molar volume of Fe3+ in garnet, and the observation of distinct slopes of Δlog fO2 (FMQ) with depth for spinel peridotite compared to spinel–garnet peridotite strongly suggest that oxygen fugacity in the cratonic peridotitic mantle is intrinsically controlled by iron equilibria involving garnet and spinel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3a–c
Fig. 4

Similar content being viewed by others

Notes

  1. The updated formulation incorporates a revised SiO2 activity based on the reaction Mg2SiO4+SiO2=Mg2Si2O6 calculated from thermodynamic data of Holland and Powell (1998), which results in a Δlog fO2 increase of approximately 0.5 log-bar units for all of our samples compared to the original formulation.

References

  • Amthauer G, Annersten H, Hafner SS (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Z Krist 143:14–55

    CAS  Google Scholar 

  • Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348

    CAS  Google Scholar 

  • Ballhaus C (1995) Is the upper mantle metal-saturated? Earth Planet Sci Lett 132:75–86

    Article  CAS  Google Scholar 

  • Ballhaus C, Frost BR (1994) The generation of oxidized CO2-bearing basaltic melts from reduced CH4-bearing upper mantle sources. Geochim Cosmochim Acta 58:4931–4940

    Article  CAS  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen barometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40; corrected in Contrib Mineral Petrol (1991) 108:384–384 and Contrib Mineral Petrol (1994) 118:109

  • Barth M, Rudnick R, Horn I, McDonough W, Spicuzza M, Valley J, Haggerty S (2001) Geochemistry of xenolithic eclogites from West Africa, Part I: a link between low MgO eclogites and Archean crust formation. Geochim Cosmochim Acta 65:1499–1527

    Article  CAS  Google Scholar 

  • Berman R, Simon F (1955) On the graphite-diamond equilibrium. Z Elektrochem 59:333–338

    CAS  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    CAS  Google Scholar 

  • Bryndzia LT, Wood BJ (1990) Oxygen thermobarometry of abyssal spinel peridotites: the redox state and C-O-H volatile composition of the Earth’s sub-oceanic upper mantle. Am J Sci 290:1093–1116

    CAS  Google Scholar 

  • Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet Sci Lett 195:75–90

    Article  CAS  Google Scholar 

  • Canil D, O’Neill HSC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37:609–635

    CAS  Google Scholar 

  • Canil D, Wei K (1992) Constraints on the origin of mantle-derived low Ca garnets. Contrib Mineral Petrol 109:421–430

    CAS  Google Scholar 

  • Canil D, O’Neill HSC, Pearson DG, Rudnick RL, McDonough WF, Carswell DA (1994) Ferric iron in peridotites and mantle oxidation states. Earth Planet Sci Lett 123:205–220

    Article  CAS  Google Scholar 

  • Daniels LRM, Gurney JJ (1991) Oxygen fugacity constraints on the southern African lithosphere. Contrib Mineral Petrol 108:154–161

    CAS  Google Scholar 

  • De Grave E, Van Alboom A (1991) Evaluation of ferrous and ferric Mössbauer fractions. Phys Chem Miner 18:337–342

    Google Scholar 

  • Eggler DH, Baker DR (1982) Reduced volatiles in the system C-O-H: implications to mantle melting, fluid formation, and diamond genesis. In: Akimoto S, Manghnani MH (eds) High pressure research in geophysics. Center for Academic Publications Japan, Tokyo, pp 237–250

  • Finnerty AA, Boyd FR (1987) Thermobarometry for garnet peridotites: basis for the determination of thermal and compositional structure of the upper mantle. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 381–402

  • Green DH, Falloon TJ, Taylor WR (1987) Mantle-derived magmas—roles of variable source peridotite and variable C-H-O fluid compositions. In: Mysen BO (ed) Magmatic processes and physio-chemical principles, vol 1. Geochemical Society, USA, pp 139–154

  • Griffin WL, Doyle BJ, Ryan CG, Pearson NJ, O’Reilly SY, Natapov L, Kivi K, Kretschmar U, Ward J (1999) Lithosphere structure and mantle terrances: Slave craton, Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The JB Dawson volume, proc VII international kimberlite conference. Red Roof Design, Cape Town, pp 299–306

  • Grutter H, Gurney JJ, Nowicki T (2003) Interpretation of kimberlite indicator mineral compositions: a key diamond exploration tool. In: “Diamonds”, MDRU short course #37, 25–26 January 2003, Vancouver

  • Gudmundsson G, Wood BJ (1995) Experimental tests of garnet peridotite oxygen barometry. Contrib Mineral Petrol 119:56–67

    Article  CAS  Google Scholar 

  • Haggerty SE (1986) Diamond genesis in a multiply-constrained model. Nature 320:34–38

    CAS  Google Scholar 

  • Haggerty SE (1999) A diamond trilogy: superplumes, supercontinents and supernovae. Science 285:851–860

    Article  CAS  PubMed  Google Scholar 

  • Haggerty SE, Tompkins LA (1983) Redox state of Earth’s upper mantle from kimberlitic ilmenites. Nature 303:295–300

    CAS  Google Scholar 

  • Heaman LM, Kjarsgaard B, Creaser RA The timing of kimberlite magmatism and implications for diamond exploration: a global perspective. Lithos (in press)

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3 -Al2O3-TiO2-SiO2-C-H2-O2. J Metamorph Geol 8:89–124

    CAS  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    CAS  Google Scholar 

  • Ionov DA, Wood BJ (1992) The oxidation state of subcontinental mantle: oxygen thermobarometry of mantle xenoliths from central Asia. Contrib Mineral Petrol 111:179–193

    CAS  Google Scholar 

  • Ireland TA, Rudnick RL, Spetsius Z (1994) Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet Sci Lett 128:199–213

    Article  CAS  Google Scholar 

  • Jones A, Ferguson I, Chave A, Evans R, McNeice G (2001) Electric lithosphere of the Slave craton. Geology 29:423–426

    Article  Google Scholar 

  • Kadik A (1997) Evolution of Earth’s redox state during upwelling of carbon-bearing mantle. Phys Earth Planet Int 100:157–166

    Article  CAS  Google Scholar 

  • Katsura T, Ito E (1990) Melting and subsolidus phase-relations in the MgSiO3-MgCO3 system at high pressures—implications to evolution of the Earth’s atmosphere. 99:110–117

  • Kelemen P, Hart S, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    Article  CAS  Google Scholar 

  • Kopylova MG, Caro G (2004) Mantle xenoliths from the southeastern Slave craton: Evidence for chemical zonation in a thick, cold lithosphere. J Petrol 45:1045–1067

    Article  CAS  Google Scholar 

  • Kopylova MG, Russell JK (2000) Chemical stratification of cratonic lithosphere: constraqints from the northern Slave craton, Canada. Earth Planet Sci Lett 181:71–87

    Article  CAS  Google Scholar 

  • Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada. J Petrol 40:79–104

    Article  CAS  Google Scholar 

  • Kopylova MG, Russell JK, Stanley C, Cookenboo H (2000) Garnet from Cr- and Ca-saturated mantle: Implications for diamond exploration. J Geochem Explor 68:183–199

    Article  CAS  Google Scholar 

  • Lee CA, Brandon AD, Norman M (2003) Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: prospects, limitations, and implications. Geochim Cosmochim Acta 67:3045–3064

    Article  CAS  Google Scholar 

  • Li Z, Ping JY, Jin MZ, Liu ML (2002) Distribution of Fe2+ and Fe3+ and next-nearest neighbour effects in natural chromites: comparison between results of QSD and Lorentzian doublet analysis. Phys Chem Miner 29:485–494

    Article  CAS  Google Scholar 

  • Luth RW (1999) Carbon and carbonates in the mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation: a tribute to Francis R (Joe) Boyd, vol 6. Geochemical Society, USA, pp 297–316

  • Luth RW, Canil D (1993) Ferric iron in mantle-derived pyroxenes and a new oxybarometer for the mantle. Contrib Mineral Petrol 113:236–248

    CAS  Google Scholar 

  • Luth RW, Virgo D, Boyd FR, Wood BJ (1990) Ferric iron in mantle-derived garnets. Implications for thermobarometry and for the oxidation state of the mantle. Contrib Mineral Petrol 104:56–72

    CAS  Google Scholar 

  • Lutkov VC, Sharapov NV, Gopfauf LM (1988) Petrochemical types of alkaline basalts from the South Tien-Shan (in Russian). Dokl Akad Nauk SSSR 303:1221–1225

    CAS  Google Scholar 

  • MacGregor ID (1974) The system MgO-Al2 O3-SiO2: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am Mineral 59:110–119

    CAS  Google Scholar 

  • McCammon CA (1994) A Mössbauer milliprobe: psractical considerations. Hyper Inter 92:1235–1239

    CAS  Google Scholar 

  • McCammon CA, Chaskar V, Richards GG (1991) A technique for spatially resolved Mössbauer spectroscopy applied to quenched metallurgical slags. Meas Sci Technol 2:657–662

    Article  CAS  Google Scholar 

  • McCammon CA, Griffin WL, Shee SH, O’Neill HSC (2001) Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib Mineral Petrol 141:287–296

    CAS  Google Scholar 

  • Navon O (1999) Diamond formation in the Earth’s mantle. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The PH Nixon volume, Proc VII international kimberlite conference. Red Roof Design, Cape Town, pp 584–604

  • O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77:185–194

    CAS  Google Scholar 

  • O’Neill HSC, Wall VJ (1987) The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol 28:1169–1191

    CAS  Google Scholar 

  • O’Neill HSC, Wood BJ (1979) An experimental study of Fe–Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib Mineral Petrol 70:59–70; corrected in Contrib Mineral Petrol (1980) 72:337

    Google Scholar 

  • O’Neill HSC, Rubie DC, Canil D, Geiger CA, Ross CR II, Seifert F, Woodland AB (1993) Ferric iron in the upper mantle and in transition zone assemblages: implications for relative oxygen fugacities in the mantle. In: Takahashi T, Jeanloz R, Rubie DC (eds) Evolution of the earth and planets. Am Geophys Union, Washington, pp 73–88

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: Insights from arc-peridotites. Chem Geol 160:409–423

    Article  CAS  Google Scholar 

  • Pearson DG, Boyd FR, Haggerty SE, Pasteris JD, Field SW, Nixon PH, Pokhilenko NP (1994) The characterization and origin of graphite in cratonic lithospheric mantle: a petrological carbon isotope and Raman spectroscopic study. Contrib Mineral Petrol 115:449–466

    CAS  Google Scholar 

  • Russell JK, Kopylova MG (1999) A steady-state conductive geotherm for the north-central Slave, Canada: Inversion of petrological data for the Jericho kimberlite pipe. J Geophys Res 104:7089–7101

    Article  CAS  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  CAS  Google Scholar 

  • Wood BJ (1990) An experimental test of the spinel peridotite oxygen barometer. J Geophys Res 95:15845–15851

    CAS  Google Scholar 

  • Wood BJ (1991) Oxygen barometry of spinel peridotites. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Miner Soc Am, Washington, pp 417–431

  • Wood BJ, Bryndzia LT, Johnson KE (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248:337–345

    CAS  Google Scholar 

  • Wood BJ, Pawley A, Frost D (1996) Water and carbon in the earth’s mantle. Phil Trans R Soc Lond A 354:1495–1511

    CAS  Google Scholar 

  • Woodland AB, Koch M (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet Sci Lett 214:295–310

    Article  CAS  Google Scholar 

  • Woodland AB, O’Neill HSC (1993) Synthesis and stability of Fe 2+3 Fe 3+2 Si3O12 garnet and phase relations with Fe3Al2Si3O12- Fe 2+3 Fe 3+2 Si3O12 solutions. Am Mineral 78:1002–1015

    CAS  Google Scholar 

  • Woodland AB, Peltonen P (1999) Ferric iron contents of garnet and clinopyroxene and estimated oxygen fugacities of peridotite xenoliths from the eastern Finland kimberlite province. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The PH Nixon volume, Proc VII international kimberlite conference. Red Roof Design, Cape Town, pp 904–911

Download references

Acknowledgements

We thank J.K. Russell and D. Canil for discussions on various aspects of the study, and C. Sluggett for sample preparation. Various versions of the manuscript were improved through detailed reviews by A.B. Woodland and D. Canil. We are indebted to H. Cookenboo, Canamera Ltd, De Beers Canada and Mountain Province Ltd. for access to xenoliths from Slave kimberlites. Funding for this research was supported partly by an NSERC research grant to MGK (2000-current).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. McCammon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCammon, C., Kopylova, M.G. A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib Mineral Petrol 148, 55–68 (2004). https://doi.org/10.1007/s00410-004-0583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0583-1

Keywords

Navigation