Skip to main content
Log in

Partitioning of ferric and ferrous iron between plagioclase and silicate melt

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Using the thermodynamic algorithm of Sugawara (Contributions to Mineralogy and Petrology 141, 2001, p. 659–686), FeO and Fe2O3 concentrations in plagioclase were computed for 420 published experiments on tholeiitic, FeTi-tholeiite, calc-alkaline, and alkaline magma compositions. Estimates of the partition coefficient between plagioclase and liquid range from 0.19 to 0.92 for Fe2O3 and from 0.008 to 0.050 for FeO, i.e. ca. twenty times greater for Fe2O3 than for FeO. Partitioning of Fe2O3 and FeO is independent of both oxygen fugacity and plagioclase composition, contradicting the common assumption that partitioning of Fe2O3 correlates positively with the amount of aluminium in plagioclase. In contrast, the SiO2-content of the magma correlates positively with the partition coefficients for Fe2O3 and FeO. This is ascribed to increasing activity of iron in polymerised SiO2-rich magma. Advances of micro-beam Fe-XANES techniques allow the determination of Fe3+/ΣFe in plagioclase. Using such plagioclase data and the partition coefficients for Fe2O3 and FeO, the Fe2O3/FeO and oxygen fugacity of equilibrium magma may be estimated. As petrological examples, we estimate that the oxygen fugacity of the Palisades sill ranged from the QFM buffer to 0.5 log unit below it (QFM to QFM –0.5), the Lake County basalt from QFM to QFM –2, and Upper Zone a of the Skaergaard intrusion from QFM –1 to QFM –1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a–c
Fig. 4
Fig. 5a–c
Fig. 6a,b
Fig. 7a,b
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bajt S, Sutton SR, Delaney JS (1994) X-ray microprobe analysis of iron oxidation states in silicates and oxides using X-ray absorption near edge structure (XANES). Geochim Cosmochim Acta 58:5209–5214

    Article  CAS  Google Scholar 

  • Baker DR, Eggler DH (1987) Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar: Application to the Aleutian volcanic center of Atka. Am Min 72:12–28

    CAS  Google Scholar 

  • Barnes SJ (1986) The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contrib Mineral Petrol 93:524–531

    Google Scholar 

  • Beattie P, Drake MJ, Jones J, Leeman W, Longhi J, McKay G, Nielsen R, Palme H, Shaw D, Takahashi E, Watson B (1993) Terminology for trace-element partitioning. Geochim Cosmochim Acta 57:1605–1606

    CAS  Google Scholar 

  • Bell PM, Mao HK (1972) Measurements of the polarized crystal-field spectra of ferrous and ferric iron in seven terrestrial plagioclases. Yearbook, Carn Inst Wash 72:574–576

    Google Scholar 

  • Bindeman IN, Davis AM (2000) Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behaviour. Geochim Cosmochim Acta 64:2863–2878

    Article  CAS  Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193

    CAS  Google Scholar 

  • Breddam K (2002) Kistufell: primitive melt from the Iceland Mantle Plume. J Petrol 43:345–373

    Article  CAS  Google Scholar 

  • Brooks CK, Nielsen TFD (1990) A discussion of Hunter and Sparks (Contrib Mineral Petrol 95:451–461). Contrib Mineral Petrol 104:244–247

    CAS  Google Scholar 

  • Burkhard DJ (2001) Crystallization and oxidation of kilauea basalt glass: processes during reheating experiments. J Petrol 42:507–527

    Google Scholar 

  • Cawthorn RG, Meyer PS, Kruger FJ (1991) Major addition of magma at the pyroxenite marker in the Western Bushveld Complex, South Africa. J Petrol 32:739–763

    CAS  Google Scholar 

  • Davis AS, Clague DA (1987) Geochemistry, mineralogy, and petrogenesis of basalt from the Gorda Ridge. J Geoph Res 92:10467–10483

    Google Scholar 

  • Delaney JS, Dyar MD, Sutton SR, Bajt S (1998) Redox ratios with relevant resolution: Solving an old problem by using the synchrotron microXANES probe. Geology 26:139–142

    Article  CAS  Google Scholar 

  • Delaney JS, Dyar MD, Sutton SR (2001) Quantifying X-ray Pleochrosim effects in Synchrotron micro-XANES microanalyses of elemental oxidation states: feldspar and biotite. Lunar and Planetary Science Conference XXXII, pp A1936

  • Draper DS, Johnston AD (1992) Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib Mineral Petrol 112:501–519

    Google Scholar 

  • Dunn T, Sen C (1994) Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochim Cosmochim Acta 58:717–733

    CAS  Google Scholar 

  • Dunn T, Stringer P (1990) Petrology and petrogenesis of the Ministers Island dike, southwest New Brunswick, Canada. Contrib Mineral Petrol 105:55–65

    CAS  Google Scholar 

  • Dyar MD, Delaney JS, Tegner C (2001) Ferric iron in feldspar as an indicator of evolution of planetary oxygen fugacity. Lunar and Planetary Science Conference XXXII, pp A1065

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284

    CAS  Google Scholar 

  • Frost BR, Lindsley DH (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: Part II. Application. Am Min 77:1004–1020

    CAS  Google Scholar 

  • Gaetani GA, Grove TL, Bryan WB (1994) Experimental phase relations of basaltic andesite from hole 839b under hydrous and anhydrous conditions. Proc Ocean Drill Prog—Sci Results 135:557–563

    Google Scholar 

  • Galoisy L, Calas G, Arrio MA (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chem Geol 174:307–319

    Article  CAS  Google Scholar 

  • Garcia MO, Ho RA, Rhodes JM, Wolfe EW (1989) Petrologic constraints on rift-zone processes. Bull Volcanol 52:81–96

    Google Scholar 

  • Garcia MO, Rhodes JM, Wolfe EW, Ulrich GE, Ho RA (1992) Petrology of lavas from episodes 2–47 of the Puu Oo eruption of Kilauea Volcano, Hawaii: evaluation of magmatic processes. Bull Volcanol 55:1–16

    Google Scholar 

  • Garcia MO, Pietruszka AJ, Rhodes JM, Swanson K (2000) Magmatic processes during the prolonged Pu’u ’O’o eruption of Kilauea Volcano, Hawaii. J Petrol 41:967–990

    CAS  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Gisselø PG (2001) Sorgenfri Gletscher Sill Complex, East Greenland—Solidification mechanisms of sheet-like bodies and the role of sill complexes in large igneous provinces. Ph.D. Thesis, University of Aarhus, Aarhus, 25 pp

  • Gorring ML, Naslund HR (1995) Geochemical reversals within the lower 100 m of the Palisades sill, New Jersey. Contrib Mineral Petrol 119:263–276

    Article  CAS  Google Scholar 

  • Grove TL, Bryan WB (1983) Fractionation of pyroxene-phyric MORB at low pressure: an experimental study. Contrib Mineral Petrol 84:293–309

    CAS  Google Scholar 

  • Grove TL, Juster TC (1989) Experimental investigations of low-Ca pyroxene stability and olivine-pyroxene-liquid equilibria at 1-atm in natural basaltic and andesitic liquids. Contrib Mineral Petrol 103:287–305

    Google Scholar 

  • Grove TL, Gerlach DC, Sando TW (1982) Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contrib Mineral Petrol 80:160–182

    CAS  Google Scholar 

  • Grove TL, Kinzler RJ, Bryan WB (1990) Natural and experimental phase relations of lavas from Serocki Volcano. Proc Ocean Drill Prog—Sci Results 106/109:9–17

  • Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California. Contrib Mineral Petrol 127:205–223

    CAS  Google Scholar 

  • Hanghøj K, Rosing MT, Brooks CK (1995) Evolution of the Skaergaard magma: evidence from crystallized melt inclusions. Contrib Mineral Petrol 120:265–269

    Article  Google Scholar 

  • Hofmeister AM, Rossman GR (1984) Determination of Fe3+ and Fe2+ concentrations in feldspar by optical absorption and EPR spectroscopy. Phys Chem Minerals 11:213–224

    CAS  Google Scholar 

  • Hunter RH, Sparks RSJ (1987) The differentiation of the Skaergaard intrusion. Contrib Mineral Petrol 95:451–461

    CAS  Google Scholar 

  • Haase KM, Stoffers P, Garbe-Schonberg CD (1997) The petrogenetic evolution of lavas from Easter Island and neighbouring seamounts, near-ridge hotspot volcanoes in the SE Pacific. J Petrol 38:785–813

    Article  CAS  Google Scholar 

  • Irvine TN, Baragar WRA (1971) Guide to chemical classification of common volcanic rocks. Can J Earth Sci 8:523–548

    CAS  Google Scholar 

  • Jang DJ, Naslund HR, McBirney AR (2001) The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization: iron enrichment revisited. Earth Plan Sci Lett 189:189–196

    Article  CAS  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostandards Newsletter 4

  • Jensen KK, Wilson JR, Robins B, Chiodoni F (2003) A sulphide-bearing orthopyroxenite layer in the Bjerkreim-Sokndal Intrusion, Norway: implications for processes during magma-chamber replenishment. Lithos 67:15–37

    Article  CAS  Google Scholar 

  • Juster TC, Grove TL, Perfit MR (1989) Experimental constraints on the generation of FeTi basalts, andesites, and rhyodacites at the Galapagos Spreading Center, 85 W and 95 W. J Geoph Res 94:9251–9274

    CAS  Google Scholar 

  • Kennedy AK, Grove TL, Johnson RW (1990) Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea. Contrib Mineral Petrol 104:722–734

    CAS  Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary Magmas of Mid-Ocean Ridge Basalts 1. Experiments and Methods. J Geoph Res 97:6885–6906

    Google Scholar 

  • Kohn SC, Schofield PF (1994) The implication of melt composition in controlling trace-element behaviour: an experimental study of Mn and Zn partitioning between forsterite and silicate melts. Chem Geol 117:73–87

    CAS  Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    CAS  Google Scholar 

  • Longhi J, Walker D, Hays JF (1976) Fe and Mg in plagioclase. Proc Lunar Sci Conf, pp 1281–1300

  • Lundgaard KL, Robins B, Tegner C, Wilson JR (2002) Formation of hybrid cumulates: melatroctolites in Intrusion 4 of the Honningsvåg Intrusive Suite, northern Norway. Lithos 61:1–19

    Article  CAS  Google Scholar 

  • Mahood GA, Baker DR (1986) Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily. Contrib Mineral Petrol 93:251–264

    CAS  Google Scholar 

  • Maier WD, Eales HV (1994) Plagioclase inclusions in orthopyroxene and olivine of the UG2-Merensky Reef interval: regional trends in the western Bushveld Complex. S Afr Geol 97:408–414

    CAS  Google Scholar 

  • McBirney AR (1989) The Skaergaard Layered Series. 1. Structure and average compositions. J Petrol 30:363–397

    CAS  Google Scholar 

  • McBirney AR (1998) Iron in plagioclase as a monitor of the differentiation of the Skaergaard intrusion: a discussion of Christian Tegner (Contrib Mineral Petrol 128:45–51). Contrib Mineral Petrol 132:103–105

    Article  CAS  Google Scholar 

  • McBirney AR (2002) The Skaergaard Layered Series. Part VI. Excluded Trace Elements. J Petrol 43:535–556

    Article  CAS  Google Scholar 

  • McBirney AR, Naslund HR (1990) The differentiation of the Skaergaard Intrusion: a discussion of Hunter and Sparks (Contrib Mineral Petrol 95:451–461). Contrib Mineral Petrol 104:235–240

    CAS  Google Scholar 

  • Meurer WP, Boudreau AE (1996) Petrology and mineral compositions of the Middle Banded Series of the Stillwater Complex, Montana. J Petrol 37:583–607

    CAS  Google Scholar 

  • Morse SA (1980) Kiglapait Mineralogy II: Fe-Ti Oxide minerals and the activities of oxygen and silica. J Petrol 21:685–719

    Google Scholar 

  • Morse SA (1984) Cation diffusion in plagioclase feldspar. Science 225:504–505

    CAS  Google Scholar 

  • Morse SA (1990) A discussion of Hunter and Sparks (Contrib Mineral Petrol 95:451–461). Contrib Mineral Petrol 104:240–244

    CAS  Google Scholar 

  • Mysen BO (1987) Magmatic silicate melts: relations between bulk composition, structure and properties Magmatic Processes: Physiochemical Principles. The Geochemical Society, pp 375–399

  • Mysen BO, Virgo D (1980) Trace element partitioning and melt structure: an experimental study at 1 atm pressure. Geochim Cosmochim Acta 44:1917–1930

    Article  CAS  Google Scholar 

  • Nicholls J, Stout MZ (1988) Picritic Melts in Kilauea—Evidence from the 1967–1968 Halemaumau and Hiiaka Eruptions. J Petrol 29:1031–1057

    CAS  Google Scholar 

  • Phinney WC (1992) Partitioning coefficients for iron between plagioclase and basalt as a function of oxygen fugacity: implications for Archean and lunar anorthosites. Geochim Cosmochim Acta 56:1885–1895

    CAS  Google Scholar 

  • Pik R et al. (1998) The northwestern Ethiopian Plateau flood basalts: classification and spatial distribution of magma types. J Volc Geotherm Res 81:91–111

    Google Scholar 

  • Sack RO, Walker D, Carmichael ISE (1987) Experimental petrology of alkalic lavas: constraints on cotectics of multiple saturation in natural basic liquids. Contrib Mineral Petrol 96:1–23

    Google Scholar 

  • Sato H (1989) Mg-Fe partitioning between plagioclase and liquid in basalts of hole 504B, ODP Leg 111: a Study of melting at 1 Atm. Proc Ocean Drill Proj—Sci Results 111:17–26

    Google Scholar 

  • Sisson TW, Grove TL (1993a) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    CAS  Google Scholar 

  • Sisson TW, Grove TL (1993b) Temperature and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol 113:167–184

    Google Scholar 

  • Snyder D, Carmichael ISE, Wiebe RA (1993) Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion: constraints of Fe-To oxide precipitation on the T-fO2 and T-p# paths of tholeiitic magmas. Contrib Mineral Petrol 113:73–86

    Google Scholar 

  • Stewart DB, Walker GW, Wright TL, Fahey JJ (1966) Physical properties of calcic labradorite from Lake County, Oregon. Am Min 51:177–197

    CAS  Google Scholar 

  • Suayah IB, Rogers JJW, Dabbagh ME (1991) High-Ti continental tholeiites from Aznam trough, northwestern Saudi Arabia: evidence of “abortive” rifting in the “embryonic” stage of Red Sea opening. Tectonophysics 191:75–87

    Article  Google Scholar 

  • Sugawara T (2000) Thermodynamic analysis of Fe and Mg partitioning between plagioclase and silicate liquid. Contrib Mineral Petrol 138:101–113

    Article  CAS  Google Scholar 

  • Sugawara T (2001) Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications. Contrib Mineral Petrol 141:659–686

    CAS  Google Scholar 

  • Tegner C (1997) Iron in plagioclase as a monitor of the differentiation of the Skaergaard intrusion. Contrib Mineral Petrol 128:45–51

    Article  CAS  Google Scholar 

  • Tegner C, Delaney JS, Dyar MD, Lundgaard KL (2003) Iron in plagioclase as a monitor of oxygen fugacity in Skaergard, Bushveld, and Bjerkreim-Sokndal layered intrusions, and anorthosite if the Rogaland Igneous Province, EGS-AGU-EUG Joint Assembly, Geophysical Research Abstracts, Nice, pp 08789

  • Thy P, Lofgren GE, Imsland P (1991) Melting relations and the evolution of the Jan Mayen magma system. J Petrol 32:303–332

    CAS  Google Scholar 

  • Thy P, Lesher CE, Fram MS (1998) Low pressure experimental constraints on the evolution of basaltic lavas from site 917, Southeast Greenland Continental Margin. Proc ODP Sci Res 152:359–372

    CAS  Google Scholar 

  • Thy P, Lesher CE, Mayfield JD (1999) Low-pressure melting studies of basalt and basaltic andesite from the Southeast Greenland Continental Margin and the origin of dacites at site 917. Proc Ocean Drill Prog—Sci Results 163:95–112

    Google Scholar 

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    CAS  Google Scholar 

  • Toplis MJ, Carroll MR (1996) Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen: implications for the Skaergaard Intrusion and other natural systems. J Petrol 37:837–858

    CAS  Google Scholar 

  • Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

    CAS  Google Scholar 

  • Toplis MJ, Libourel G, Carroll MR (1994) The role of phosphorus in crystallisation processes of basalt: an experimental study. Geochim Cosmochim Acta 58:797–810

    CAS  Google Scholar 

  • Tormey DR, Grove TL, Bryan WB (1987) Experimental petrology of normal MORB near the Kane Fracture Zone: 22–25 N, mid-Atlantic ridge. Contrib Mineral Petrol 96:121–139

    CAS  Google Scholar 

  • Tormey DR, Frey FA, Lopez-Escobar L (1995) Geochemistry of the active Azufre-Planchon-Peteroa Volcanic Complex, Chile (35 15’S): evidence for multiple sources and processes in a Cordilleran Arc Magmatic System. J Petrol 36:265–298

    CAS  Google Scholar 

  • Wager LR, Brown GM (1968) Layered Igneous Rocks. Oliver and Boyd, London

  • Walker KR (1969) The Palisades sill, New Jersey: A reinvestigation. Geol Soc Am, Special paper 111, pp 1–178

  • White WM (2001) Lecture notes in Geochemistry. Cornell University

  • Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt and oxygen fugacity. Contrib Mineral Petrol 137:102–114

    CAS  Google Scholar 

  • Wilke M, Farges F, Petit PE, Brown Jr. GE, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Min 86:714–730

    CAS  Google Scholar 

  • Wilkinson JFG, Hensel HD (1988) The petrology of some picrites from Mauna Loa and Kilauea volcanoes, Hawaii. Contrib Mineral Petrol 98:326–345

    CAS  Google Scholar 

  • Yang HJ, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol 124:1–18

    Google Scholar 

  • Yang HJ, Frey FA, Clague DA, Garcia MO (1999) Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones. Contrib Mineral Petrol 135:355–372

    Google Scholar 

Download references

Acknowledgements

This work was carried out as part of K.L. Lundgaard’s PhD project financed by the Science Faculty at the University of Aarhus. Danish Natural Science Research Council grant 21–01–0297 supported this work. The manuscript was improved considerably as a result of constructive discussions and comments on early drafts by R.G. Cawthorn, J.S. Delaney, M.D. Dyar, C.E. Lesher, J. Longhi, P. Thy and J.R. Wilson. Thorough journal reviews by M. Henderson and M. Wilke, and the editorial handling by I. Parsons is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper Leth Lundgaard.

Additional information

Editorial responsibility: I. Parsons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundgaard, K.L., Tegner, C. Partitioning of ferric and ferrous iron between plagioclase and silicate melt. Contrib Mineral Petrol 147, 470–483 (2004). https://doi.org/10.1007/s00410-004-0568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0568-0

Keywords

Navigation