Skip to main content
Log in

Phyllosilicate minerals in the hydrothermal mafic–ultramafic-hosted massive-sulfide deposit of Ivanovka (southern Urals): comparison with modern ocean seafloor analogues

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We have studied textural relationships and compositions of phyllosilicate minerals in the mafic–ultramafic-hosted massive-sulfide deposit of Ivanovka (Main Uralian Fault Zone, southern Urals). The main hydrothermal phyllosilicate minerals are Mg-rich chlorite, variably ferroan talc, (Mg, Si)-rich and (Ca, Na, K)-poor saponite (stevensite), and serpentine. These minerals occur both as alteration products after mafic volcanics and ultramafic protoliths and, except serpentine, as hydrothermal vein and seafloor mound-like precipitates associated with variable amounts of (Ca, Mg, Fe)-carbonates, quartz and Fe and Cu (Co, Ni) sulfides. Brecciated mafic lithologies underwent pervasive chloritization, while interlayered gabbro sills underwent partial alteration to chlorite + illite ± actinolite ± saponite ± talc-bearing assemblages and later localized deeper alteration to chlorite ± saponite. Ultramafic and mixed ultramafic–mafic breccias were altered to talc-rich rocks with variable amounts of chlorite, carbonate and quartz. Chloritization, locally accompanied by formation of disseminated sulfides, required a high contribution of Mg-rich seawater to the hydrothermal fluid, which could be achieved in a highly permeable, breccia-dominated seafloor. More evolved hydrothermal fluids produced addition of silica, carbonates and further sulfides, and led to local development of saponite after chlorite and widespread replacement of serpentine by talc. The Ivanovka deposit shows many similarities with active and fossil hydrothermal sites on some modern oceanic spreading centers characterized by highly permeable upflow zones. However, given the arc signature of the ore host rocks, the most probable setting for the observed alteration–mineralization patterns is in an early-arc or forearc seafloor–subseafloor environment, characterized by the presence of abundant mafic–ultramafic breccias of tectonic and/or sedimentary origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aggarwal PK, Nesbitt BE (1984) Geology and geochemistry of the Chu Chua massive sulfide deposit, British Columbia. Econ Geol 79:815–825

    CAS  Google Scholar 

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions, Geophysical Monograph, vol 91. Am Geophys Un, pp 85–114

  • Alt JC (1999) Hydrothermal alteration and mineralization of oceanic crust: mineralogy, geochemistry, and processes. In: Barrie T, Hannington M (eds) Volcanic associated massive sulfide deposits. Rev Econ Geol, vol 8. Soc Econ Geol, Chelsea, MI, pp 133–155

  • Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1-km section through the upper oceanic crust, DSDP Hole 504B: the mineralogy, chemistry, and evolution of seawater-basalt interactions. J Geophys Res 91:10309–10335

    CAS  Google Scholar 

  • Alt JC, Laverne C, Muehlenbachs K (1985) Alteration of the upper oceanic crust: mineralogy and processes in Deep Sea Drilling Project Hole 504B, Leg 83. In: Anderson RN, Honnorez J, Becker K et al. (eds) Init Reports DSDP, vol 83. US Government Printing Office, Washington, DC, pp 217–247

  • Alt JC, Laverne C, Vanko, Tartarotti P, Teagle DAH, Bach W, Zuleger E, Erzinger J, Honnorez J, Pezard PA, Becker K, Salisbury MH, Wilkens RH (1996) Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: a synthesis of results from Site 504B (DSDP legs 69, 70, and 83, and ODP legs 111, 137, 140, and 148). In: Alt JC, Kinoshita H, Stokking LB, Michael PJ (eds) Proc ODP Sci Res, vol. 148. College Station, TX (Ocean Drilling Program), pp 417–434

  • Alt JC, Teagle DAH (2003) Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chem Geol 201:191–211

    Article  CAS  Google Scholar 

  • Alt JC, Teagle DAH, Brewer T, Shanks WC III, Halliday A (1998) Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy. J Geophys Res 103:12365–12380

    CAS  Google Scholar 

  • Alt JC, Zuleger E, Erzinger J (1995) Mineralogy and stable isotopic compositions of the hydrothermally altered lower sheeted dike complex, Hole 504B, Leg 140. In: Erzinger J, Becker K, Dick HJB, Stokking LB (eds) Proc ODP Sci Res, vol. 134/140. College Station, TX (Ocean Drilling Program), pp 155–166

  • Andrews AJ (1980) Saponite and celadonite in Layer 2 Basalts, DSDP Leg 37. Contrib Mineral Petrol 73:323–340

    CAS  Google Scholar 

  • Bach W, Banerjee NR, Dick HJB, Baker ET (2002) Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°–16°E. Geochem Geophys Geosyst 3, DOI 10.1029/2001GC000279

  • Bettison LA, Schiffman P (1988) Compositional and structural variations of phyllosilicates from the Point Sal Ophiolite, California. Am Mineral 73:62–76

    Google Scholar 

  • Bettison-Varga I, Mackinnon I-DR, Schiffman P (1991) Integrated TEM, XRD and electron microprobe investigation mixed-layer chlorite-smectite from the Point Sal Ophiolite, California. J Metamorph Geol 9:697–710

    CAS  Google Scholar 

  • Bevins RE, Robinson D, Rowbotham G (1991) Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer. J Metamorph Geol 9:711–721

    CAS  Google Scholar 

  • Brown D, Spadea P (1999) Processes of forearc and accretionary complex formation during arc-continent collision in the Southern Ural Mountains. Geol 27:649–652

    Article  Google Scholar 

  • Buchkovskiy ES (1970) Sulphide mineralization connected with ultramafic intrusions of the Western part of Magnitogorskiy megasinform. Geology, Mineralogy and Geochemistry of South Urals Sulphide Deposits. Ufa Institute of Geology Publications (in Russian), Ufa, pp 114–135

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485

    Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer; the Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244

    Google Scholar 

  • Christofides G, Thimiatis G, Koroneos A, Sklavounos S, Eleftheriadis G (1994) Mineralogy and chemistry of Cr-chlorites associated with chromites from Vavdos and Vasilika ophiolite complexes (Chalkidiki, Macedonia, N. Greece). Chemie der Erde 54:151–166

    CAS  Google Scholar 

  • Clayton RN, O’Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3067

    CAS  Google Scholar 

  • Cole DR, Ripley EM (1999) Oxygen isotope fractionation between chlorite and water from 170 to 350 °C: a preliminary assessment based on partial exchange and fluid/rock experiments. Geochim Cosmochim Acta 63:449–457

    Article  CAS  Google Scholar 

  • Cole TG (1988) The nature and origin of smectite in the Atlantis II Deep, Red Sea. Can Mineral 26:755–763

    CAS  Google Scholar 

  • Costa UR, Barnett RL, Kerrich R (1983) The Mattagami Lake Archean Zn-Cu sulfide deposit, Quebec: hydrothermal coprecipitation of talc and sulfides in a sea-floor brine pool-Evidence from geochemistry, 18O/16O, and mineral chemistry. Econ Geol 78:1144–1203

    CAS  Google Scholar 

  • De Caritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clays Clay Miner 41:219–239

    Google Scholar 

  • Escande M, Decarreau A, Labeyrie L (1984) Etude experimentale de l’exchangeabilité des isotopes de l’oxygene des smectites. C R Acad Sci Paris 299:707–710

    CAS  Google Scholar 

  • Evans BW, Guggenheim S (1988) Talc, pyrophyllite, and related minerals. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas), Rev Mineral 19:225–294

  • Fouillac AM, Girard JP (1996) Laser oxygen isotope analysis of silicate/oxide grain separates: evidence for a grain size effect? Chem Geol 130:31–54

    Article  CAS  Google Scholar 

  • Goodfellow WD, Franklin JM (1993) Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge. Econ Geol 88:2037–2068

    CAS  Google Scholar 

  • Green GR, Ohmoto H, Date J, Takahashi T (1983) Whole-rock oxygen isotope distribution in the Fukazawa-Kosaka area, Hokuroku District, Japan, and its potential application to mineral exploration. In: Ohmoto H, Skinner BJ (eds) The Kuroko and related volcanogenic massive sulfide deposits. Econ Geol Monogr 5:395–411

    Google Scholar 

  • Herrington RJ, Armstrong RN, Zaykov VV, Maslennikov VV, Tesalina SG, Orgeval J-J, Taylor RN (2002) Massive sulfide deposits in the South Urals: geological setting within the framework of the Uralide Orogen. In: Brown D, Juhlin C, Puchkov (eds) Mountain building in the Uralides. AGU Geophys Monograph 132:155–182

    CAS  Google Scholar 

  • Hey MH (1954) A new review of the chlorites. Mineral Mag 30:277–292

    CAS  Google Scholar 

  • Humphris SE, Alt JC, Teagle DAH, Honnorez JJ (1998) Geochemical changes during hydrothermal alteration of basement in the stockwork beneath the active TAG hydrothermal mound. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proc ODP Sci Res, vol 158. College Station, TX (Ocean Drilling Program), pp 255–276

  • Humphris SE, Herzig PM, Miller DJ, Alt JC, Becker K, Brown D, Brügmann G, Chiba H, Fouqet Y, Gemmell JB, Guerin G, Hannington MD, Holm NG, Honnorez JJ, Iturrino GJ, Knott R, Ludwig R, Nakamura K, Petersen S, Reysenbach A-L, Rona PA, Smith S, Sturz AA, Tivey MK, Zhao X (1995) The internal structure of an active sea-floor massive sulphide deposit. Nature 377:713–716

    Article  CAS  Google Scholar 

  • Humphris SE, Thompson G (1978) Hydrothermal alteration of oceanic basalts by seawater. Geochim Cosmochim Acta 42:107–125

    CAS  Google Scholar 

  • Ismagilov MI (1962) Some mineralogical and genetic characteristics of the Dergamish Cu–Co deposit. Geology and mineralogy of copper deposits in Southern Urals (Geologo-mineralogicheskie osobennosti mednorudnykh mestorozhdenii Yuzhnogo Urala) (in Russian). Ufa Inst Geol Publ Ufa

  • Jiang WT, Peacor DR, Buseck PR (1994) Chlorite geothermometry? Contamination and apparent octahedral vacancies. Clays Clay Miner 42:593–605

    CAS  Google Scholar 

  • Kim S-T, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475

    CAS  Google Scholar 

  • Koski RA, Lonsdale PF, Shanks WC, III, Berndt ME, Howe SS (1985) Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the southern trough of Guaymas Basin, Gulf of California. J Geophys Res 90:6695–6707

    CAS  Google Scholar 

  • Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:1898–1911

    CAS  Google Scholar 

  • Lackschewitz KS, Singer A, Botz R, Garbe-Schönberg D, Stoffers P, Horz K (2000) Formation and transformation of clay minerals in the hydrothermal deposits of Middle Valley, Juan de Fuca Ridge, ODP Leg 169. Econ Geol 95:361–390

    CAS  Google Scholar 

  • Laird J (1988) Chlorites: metamorphic petrology. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas), Rev Mineral 19:405–453

  • Lapham DM (1958) Structural and chemical variation in chromium chlorite. Am Mineral 43:921–956

    CAS  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Recommendation of the IUGS Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford

  • Lécuyer C, Allemand P (1999) Modeling of the oxygen isotope evolution of seawater: implications for the climate interpretation of the δ18O of marine sediments. Geochim Cosmochim Acta 63:351–361

    Article  Google Scholar 

  • Lonsdale PF, Bischoff JL, Burns VM, Kastner M, Sweeney RE (1980) A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center. Earth Planet Sci Lett 49:8–20

    Article  CAS  Google Scholar 

  • Maslov AV, Cherkasov VL, Tishenko VT, Smirnova IA, Artyushkova OV, Pavlov VV (1993) Stratigraphy and correlation of Middle Paleozoic volcanogenic complexes of major copper-pyrite districts of the South Urals (in Russian). Ufa Scientific Centre, RAS, Ufa, 217 pp

  • McLeod RL, Stanton RL (1984) Phyllosilicates and associated minerals in some Paleozoic stratiform sulfide deposits of southeastern Australia. Econ Geol 79:1–22

    CAS  Google Scholar 

  • Melcher F, Grum W, Simon G, Thalhammer T, V, Stumpfl EF (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan; a study of solid and fluid inclusions in chromite. J Petrol 38:1419–1458

    CAS  Google Scholar 

  • Nimis P, Omenetto P, Tesalina SG, Zaykov VV, Tartarotti P, Orgeval J-J (2003) Peculiarities of some mafic–ultramafic-hosted massive sulfide deposits from southern Urals. A likely forearc occurrence. In: Eliopoulos DG et al. (eds) Mineral exploration and sustainable development, Proc 7th SGA Meeting, vol 1. Millpress, Rotterdam, pp 627–630

  • Percival JB, Ames DE (1993) Clay mineralogy of active hydrothermal chimneys and an associated mound, Middle Valley, northern Juan de Fuca Ridge. Can Mineral 31:957–971

    CAS  Google Scholar 

  • Peter JM, Scott SD (1988) Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California. Can Mineral 26:567–587

    CAS  Google Scholar 

  • Prokin VA, Buslaev FP (1999) Massive copper–zinc sulphide deposits in the Urals. Ore Geol Rev 14:1–69

    Article  Google Scholar 

  • Puchkov VN (1997) Structure and geodynamics of the Uralian orogen. In: Burg J-P, Ford M (eds) Orogeny through time. Geol Soc Spec Publ 121:201–236

    Google Scholar 

  • Richards HG, Cann JR, Jensenius J (1989) Mineralogical zonation and metasomatism of the alteration pipes of Cyprus sulfide deposits. Econ Geol 84:91–115

    CAS  Google Scholar 

  • Ridley WI, Perfit MR, Jonasson IR, Smith MF (1994) Hydrothermal alteration in oceanic ridge volcanics: a detailed study at the Galapagos fossil hydrothermal field. Geochim Cosmochim Acta 58:2477–2494

    Article  Google Scholar 

  • Rona PA (1988) Hydrothermal mineralization at oceanic ridges. Can Mineral 26:431–465

    CAS  Google Scholar 

  • Saccoccia PJ, Seyfried WE (1994) The solubility of chlorite solid solution in 3.2 wt% NaCl fluids from 300–400 °C, 500 bars. Geochim Cosmochim Acta 58:567–585

    CAS  Google Scholar 

  • Schiffman P, Staudigel H (1995). The smectite to chlorite transition in a fossil seamount hydrothermal system; the basement complex of La Palma, Canary Islands. J Metamorph Geol 13:487–498

    CAS  Google Scholar 

  • Seravkin IB, Znamenski SE, Kosarev AM (2001) Fault tectonics and ore deposits of the Trans-Uralian Bashkiria (in Russian). Poligrafcombinat, Ufa

  • Shau Y-H, Peacor DR (1992) Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83—a TEM and AEM study. Contrib Mineral Petrol 112:119–133

    CAS  Google Scholar 

  • Shau Y-H, Peacor DR, Essene EJ (1990) Corrensite and mixed-layer chlorite/ corrensite in metabasalt from northern Taiwan; TEM/ AEM, EMPA, XRD, and optical studies. Contrib Mineral Petrol 105:123–142

    CAS  Google Scholar 

  • Shikazono N, Kawahata H (1987) Compositional differences in chlorite from hydrothermally altered rocks and hydrothermal ore deposits. Can Mineral 25:465–474

    CAS  Google Scholar 

  • Styrt MM, Brackmann AJ, Holland HD, Clark BC, Pisutha-Arnond V, Eldridge CS, Ohmoto H (1981) The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude. Earth Planet Sci Lett 53:382–390

    Article  CAS  Google Scholar 

  • Tesalina SG, Nimis P, Augé T, Zaykov V (2003) Origin of chromite in mafic–ultramafic-hosted hydrothermal massive sulfides from the Main Uralian Fault, South Urals, Russia. Lithos 70:39–59

    Article  CAS  Google Scholar 

  • Tesalina SG, Zaykov VV, Orgeval J-J, Augé T, Omenetto P (2001) Mafic-ultramafic hosted massive sulphide deposits in Southern Urals (Russia). In: Piestrzynski et al. (eds) Mineral deposits at the beginning of the 21st century. Swets & Zeitlinger Publishers, Lisse, pp 353–356

  • Turner RJW, Ames DE, Franklin JM, Goodfellow WD, Leitch CHB, Höy T (1993) Character of active hydrothermal mounds and nearby altered hemipelagic sediments in the hydrothermal areas of Middle Valley, northern Juan de Fuca Ridge; data on shallow cores. Can Mineral 31:973–995

    CAS  Google Scholar 

  • Vanko DA, Laverne C, Tartarotti P, Alt JC (1996) Chemistry and origin of secondary minerals from the deep sheeted dikes cored during Leg 148 (Hole 504B). In: Alt JC, Kinoshita H, Stokking LB, Michael PJ (eds) Proc ODP Sci Res, vol. 148. College Station, TX (Ocean Drilling Program), pp 71–86

  • Xie X, Byerly GR, Ferrell REJ (1997) IIb trioctahedral chlorite from the Barberton greenstone belt; crystal structure and rock composition constraints with implications to geothermometry. Contrib Mineral Petrol 126:275–291

    CAS  Google Scholar 

  • Zakharov AA, Zakharova AA (1975) The ore composition at the Ivanovka sulfide deposit in the Southern Urals versus their relation to specific lithology of host rocks. Geology and conditions of formation of copper deposits in the Southern Urals (Geologiya i Usloviya Obrazovaniya Mestorozhdenii Medi na Yuzhnom Urale) (in Russian). Ufa Institute of Geology Publications, Ufa, 105 pp

  • Zang W, Fyfe WS (1995) Chloritization of the hydrothermally altered bedrock at the Igarape Bahia gold deposit, Carajas, Brazil. Miner Deposita 30:30–38

    CAS  Google Scholar 

  • Zaykov VV, Zaykova EV, Maslennikov VV (2000) Volcanic complexes and ore mineralization in spreading basins of the southern Urals. In: Mezhelovsk NV (ed) Geodynamics and metallogeny: theory and implications for applied geology. Ministry of Natural Resources of the RF and Geokart Ltd, Moscow, pp 315–337

  • Zheng Y-F (1993a) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    CAS  Google Scholar 

  • Zheng Y-F (1993b) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263

    CAS  Google Scholar 

  • Zheng Y-F, Simon K (1991) Oxygen isotope fractionation in hematite and magnetite: a theoretical calculation and application to geothermometry of metamorphic iron-formation. Eur J Mineral 3:877–886

    CAS  Google Scholar 

  • Zhong WJS, Hughes JM, Scotford DM (1985) The response of chlorite to metasomatic alteration in Appalachian ultramafic rocks. Can Mineral 23:443–446

    CAS  Google Scholar 

  • Zierenberg RA, Koski RA, Morton JL, Bouse RM, Shanks WC, III (1993) Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge. Econ Geol 88:2069–2098

    CAS  Google Scholar 

  • Zierenberg RA, Schiffman P, Jonasson IR, Tosdal RM, Pickthorn WJ, McClain JS (1995) Alteration of basalt hyaloclastite at the off-axis Sea Cliff hydrothermal field, Gorda Ridge. Chem Geol 126:77–99

    CAS  Google Scholar 

  • Zierenberg RA, Shanks WC III (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Econ Geol 78:57–72

    CAS  Google Scholar 

  • Zierenberg RA, Shanks WC III (1988) Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Can Mineral 26:737–753

    CAS  Google Scholar 

  • Zierenberg RA, Shanks WC III, Seyfried WE Jr, Koski RA, Strickler MD (1988) Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon. J Geophys Res 93:4657–4674

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to N. Tatarko (Bashkirgeologia, Ufa) for access to the Sibay lithotheque and drill-core DDH2T. J.-J. Orgeval (BRGM Orléans) and V. Zaykov (IMIN Miass) are thanked for help during the 2001 Urals field trip. B. Buschmann (Freiberg) is thanked for fruitful discussion. R. Carampin and L. Peruzzo (CNR-IGG Padova), E. Bechu (BRGM Orléans) and F. Zorzi (Padova) are thanked for assistance during EMP, SEM, XRD and oxygen isotope analyses. Reviews by J. Alt and an anonymous referee helped us to considerably improve the manuscript. This work was carried out in the framework of the EU-funded MinUrals project INCO COPERNICUS ICA2 CT-2000-10011 (IMIN-Kroseven-BRGM Collaborative Partnership). P. Nimis and P. Omenetto gratefully acknowledge the financial support of the CNR-IGG (Padova) and Italian MURST ex 60% grants. S. Tesalina gratefully acknowledges the support of Russian Foundations RFFI No. 01-05-65329 and University of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Nimis.

Additional information

Editorial responsibility: J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimis, P., Tesalina, S.G., Omenetto, P. et al. Phyllosilicate minerals in the hydrothermal mafic–ultramafic-hosted massive-sulfide deposit of Ivanovka (southern Urals): comparison with modern ocean seafloor analogues. Contrib Mineral Petrol 147, 363–383 (2004). https://doi.org/10.1007/s00410-004-0565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0565-3

Keywords

Navigation