Skip to main content

Advertisement

Log in

Phase relations of potassium-bearing clinopyroxene in the system CaMgSi2O6-KAlSi2O6 at 7 GPa

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The pseudo-binary system CaMgSi2O6-KAlSi2O6, modeling the potassium-bearing clinopyroxene (KCpx) solid solution, has been studied at 7 GPa and 1,100–1,650 °C. The KCpx is a liquidus phase of the system up to 60 mol% of KAlSi2O6. At higher content of KAlSi2O6 in the system, grossular-rich garnet becomes a liquidus phase. Above 75 mol% of KAlSi2O6 in the system, KCpx is unstable at the solidus as well, and garnet coexists with kalsilite, Si-wadeite and kyanite. No coexistence of KCpx with kyanite was observed. Above the solidus, KAlSi2O6 content of the KCpx coexisting with melt increases with decreasing temperature. Near the solidus of the system (about 1,250 °C) KCpx contains up to 5.6 wt% of K2O, i.e. about 22–26 mol% of KAlSi2O6. Such high concentration of potassium in KCpx is presumably the maximal content of KAlSi2O6 in the Fe-free clinopyroxene at 7 GPa. In addition to the major substitution MgM1М2⇔AlМ1KМ2, the KCpx solid solution contains Ca-Eskola and only minor Ca-Tschermack components. Our experimental results indicate that the natural assemblage KCpx+grossular-rich garnet might be a product of crystallization of the ultra-potassic SiO2-rich alumino-silicate mantle melts (>200 km).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–f.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Bindi L, Safonov OG, Litvin YA, Perchuk LL, Menchetti S (2002) Ultrahigh potassium content in the clinopyroxene structure: an X-ray single-crystal study. Eur J Mineral 14:929–934

    Article  Google Scholar 

  • Bindi L, Safonov OG, Yapaskurt VO, Perchuk LL, MenchettiS (2003) Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, Kokchetav Complex, Kazakhstan: occurrence, composition and crystal-chemical characterization. Am Mineral 88:464–468

    CAS  Google Scholar 

  • Bishop FC, Smith JV, Dawson JB (1978) Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites. Lithos 11:155–173

    CAS  Google Scholar 

  • Bowen NL, Schairer JF (1929) The system leucite-diopside. Am J Sci, 5th ser. 18:301

    Google Scholar 

  • Bradley CC (1969) High-pressure methods in solid-state research. Butterworths, London

  • Chudinovskikh LT, Zharikov VA, Ishbulatov RA, Matveev YA (2001) On the mechanism of incorporation of ultra-high amounts of potassium into clinopyroxene at high pressure. Dokl Rossikoi Akad Nauk, Earth Sci 380:1-4

    Google Scholar 

  • Edgar AD, Mitchell RH (1997) Ultra high pressure-temperature melting experiments on an SiO2-rich lamproite from Smoky Butte, Montana: derivation of siliceous lamproite magmas from enriched sources deep in the continental mantle. J Petrol 38:457–477

    Article  Google Scholar 

  • Edgar AD, Vukadinovic D (1993) Potassium-rich clinopyroxene in the mantle: an experimental investigation of K-rich lamproite up to 60 kbar. Geochim Cosmochim Acta 57:5063–5072

    CAS  Google Scholar 

  • Fasshauer DW, Wunder B, Chatterjee ND, Höhne GWH (1998) Heat capacity of wadeite-type K2Si4O9 and pressure-induced stable decomposition of K-feldspar. Contrib Mineral Petrol 131:210–218

    Article  Google Scholar 

  • Gasparik T (1996) Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside. Contrib Mineral Petrol 124:139–153

    Article  Google Scholar 

  • Gasparik T, Lindsley DH (1980) Experimental study of pyroxenes in the system CaMgSi2O6–CaAl2SiO6–Ca0.5AlSi2O6. EOS 61:402–403

    Google Scholar 

  • Gasparik T, Litvin YA (1997) Stability of Na2Mg2Si2O7 and melting relations on the forsterite-jadeite join at pressures up to 22 GPa. Eur J Mineral 9:311–326

    Google Scholar 

  • Ghorbani MR, Middlemost EAK (2000) Geochemistry of pyroxene inclusions from the Warrumbungle Volcano, New South Wales, Australia. Am Mineral 85:1349–1367

    CAS  Google Scholar 

  • Hamilton DL, Henderson CMB (1968) The preparation of silicate compositions by a gelling method. Mineral Mag 36:832–838

    CAS  Google Scholar 

  • Harlow GE (1996) Structure refinement of a natural K-rich diopside: the effect of K on the average structure. Am Mineral 81:632–638

    CAS  Google Scholar 

  • Harlow GE (1997) K in clinopyroxene at high pressure and temperature: an experimental study. Am Mineral 82:259–269

    CAS  Google Scholar 

  • Harlow GE (1999) Interpretation of KCpx and CaEs in clinopyroxene from diamond inclusions and mantle samples. Proc Seventh Intern Kimberlite Conf, vol I, Cape Town, South Africa

  • Harlow GE (2002) Diopside+F-rich phlogopite at high P and T: Systematics, crystal chemistry and stability of KMgF3, clinohumite and chondrodite. Geol Mater Res 4(3):1–28

    Google Scholar 

  • Harlow GE, Veblen DR (1991) Potassium in clinopyroxene inclusions from diamonds. Science 251:652–655

    CAS  Google Scholar 

  • Homan CG (1975) Phase diagram of Bi up to 140 kbars. J Phys Chem Solids 36:1249–1254

    Article  Google Scholar 

  • Jaques AL, O'Neill HSC, Smith CB, Moon J, Chappell BW (1990) Diamondiferous peridotite xenoliths form the Argyle (AK1) lamproite pipe, Western Australia. Contrib Mineral Petrol 104:255–276

    CAS  Google Scholar 

  • Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81:2467–2470

    CAS  Google Scholar 

  • Khanukova LT, Zharikov VA, Ishbulatov RA, Litvin YA (1976) Excess silica in solid solutions of high-pressure clinopyroxenes as shown by experimental study of the system CaMgSi2O6-CaAl2SiO6-SiO2 at 35 kilobars and 1,200 °C. Dokl Akad Nauk SSSR Earth Sci 229:170–172

    Google Scholar 

  • Litvin YA (1990) Physical and chemical studies of melting of materials from the deep earth (in Russian). Nauka Press, Moscow

  • Liu L (1987) High-pressure transition of potassium aluminosilicates with an emphasis on leucite. Contrib Mineral Petrol 95:1–3

    CAS  Google Scholar 

  • Luth RW (1992) Potassium in clinopyroxene at high pressure: experimental constraints. EOS Trans Am Geophys Un 73:608

    Google Scholar 

  • Luth RW (1995) Potassium in clinopyroxene at high pressure. EOS Trans Am Geophys Un 76: F711

    Google Scholar 

  • Luth RW (1997) Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa. Am Mineral 82:1198–1209

    CAS  Google Scholar 

  • Maaløe S (1985) Principles of igneous petrology. Springer, Berlin Heidelberg New York

  • Matveev YA, Litvin YA, Perchuk LL, Chudinovskikh LT, Yapaskurt VO (1998) Intensive carbonate-silicate reactions in the K2Mg(CO3)2–(Ca0.5Mg0.5)SiO3–Al2O3 system in experiment at 7 GPa: relation to Kokchetav-type diamond deposits. Terra nova v. 10, Terra Abstr, Suppl 1:39

  • McCandless TE, Gurney JJ (1986) Sodium in garnet and potassium in clinopyroxene: criteria for classifying mantle eclogites. Blackwell, Victoria, Geol Soc Aust Spec Publ 14:827–832

  • McGregor ID, Carter JL (1970) The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys Earth Planet Inter 3:391–397

    Article  Google Scholar 

  • Mitchell RH (1995) Melting experiments on a sanidine-phlogopite lamproite at 4–7 GPa and their bearing on the source of lamproitic magmas. J Petrol 36:1455–1474

    Google Scholar 

  • Moore JD, Gurney JJ (1985) Pyroxene solid solution in garnets included in diamond. Nature 318:582–584

    Google Scholar 

  • Navon O, Hitcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond microinclusions. Nature 325:784–789

    Article  Google Scholar 

  • Novgorodov PG, Bulanova GP, Pavlova LA, Mikhailov VN, Ugarov VV, Shebanin AP, Argunov KP (1990) Inclusions of potassic phases, coesite and omphacite in the coated diamond crystal from the "Mir" pipe. Dokl Akad Nauk SSSR Earth Sci 310:439–443

    CAS  Google Scholar 

  • Perchuk LL, Yapaskurt VO (1998) Mantle-derived ultrapotassic liquids. Russ Geol Geophys 39:1746–1755

    Google Scholar 

  • Perchuk LL, Yapaskurt VO, Okay A (1995) Comparative petrology of diamond-bearing metamorphic complexes. Petrology 3:238–276

    Google Scholar 

  • Perchuk LL, Sobolev NV, Yapaskurt VO, Shatsky VS (1996) Relics of potassium-bearing pyroxenes from diamond-free pyroxene-garnet rocks of the Kokchetav massif, northern Kasakhstan. Dokl Rossikoi Akad Nauk Earth Sci 348:790–795

    CAS  Google Scholar 

  • Perchuk LL, Safonov OG, Yapaskurt VO, Barton JM Jr (2002) Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicators of mantle-derived ultrahigh-potassic liquids: an analytical review. Lithos 60(3–4):89–111

    Google Scholar 

  • Prinz M, Manson DV, Hlava PF, Keil K (1975) Inclusions in diamonds: garnet lherzolite and eclogite assemblages. Phys Chem Earth 9:797–815

    CAS  Google Scholar 

  • Reid AM, Brown RW, Dawson JB, Whitfield GG, Siebert JC (1976) Garnet and pyroxene compositions in some diamondiferous eclogites. Contrib Mineral Petrol 58:203–220

    CAS  Google Scholar 

  • Rhines FN (1956) Phase diagrams in metallurgy. McGraw-Hill, New York

  • Rickard RS, Harris JW, Gurney JJ, Cardoso P (1989) Mineral inclusions in diamonds from the Koffiefontein Mine. In: Geol Soc Aust Spec Publ, Blackwell Scientific, Victoria 14, pp 1054–1062

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58:761–771

    CAS  Google Scholar 

  • Shimizu N (1971) Potassium content of synthetic clinopyroxenes at high pressures and temperatures. Earth Planet Sci Lett 11:374–380

    Article  Google Scholar 

  • Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–746

    CAS  Google Scholar 

  • Stachel T, Brey GP, Harris JW (2000) Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contrib Mineral Petrol 140:1–15

    Article  CAS  Google Scholar 

  • Swanson DK, Prewitt CT (1983) The crystal structure of K2SiVISiIV 3O9. Am Mineral 68:581–585

    CAS  Google Scholar 

  • Tsuruta K, Takahashi E (1998) Melting study of an alkali basalt JB-1 up to 12.5 GPa: behavior of potassium in the deep mantle. Phys Earth Planet Int 107:119–130

    Article  Google Scholar 

  • Urakawa S, Kondo T, Igawa N, Shimomura O, Ohno H (1994) Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8. Phys Chem Minerals 21:387–391

    CAS  Google Scholar 

  • Wang W, Takahashi E (1999) Subsolidus and melting experiments of a K-rich basaltic composition to 27 GPa: Implication for behavior of potassium in the mantle. Am Mineral 84:357–361

    CAS  Google Scholar 

Download references

Acknowledgements

Constructive personal discussions with George Harlow and Andrey Girnis gave some new ideas to the interpretation of the experiments and phase diagram. Comments by Robert Luth, Roland Stalder, and Mario Tribaudino improved the text of the paper. Authors especially thank J. Hoefs and J. Touret for quick organization the paper review. The authors are very grateful to Ludmila P. Red'kina (Institute of Experimental Mineralogy) for the preparation of starting materials and mixtures. The facilities for electron microprobe analyses were provided by both the Department of Petrology (analysts Elena V. Guseva and Natalia N. Korotaeva) and the Department of Mineralogy (analyst Dmitriy A. Varlamov) of the Moscow State University. This study is supported by the Russian Foundation for Basic Research (projects 01-05-64775, 03-05-06289 to OGS and 02-05-64684 to Y.A.L.), the program for young scientists of the Russian Academy of Science (project no. 323 to O.G.S.), the Science Support Foundation (program for young scientists), the Russian State Leading Scientific Schools Program (project no. 16452003.5 to L.L.P.), and by M.U.R.S.T., cofinanziamento 2001, project "Structural complexity and properties of minerals: microstructures, modularities, modulations" (to L.B. and S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Safonov.

Additional information

Editorial responsibility: J. Hoefs

Abbreviations

Abbreviations

Mineral abbreviations

Ca-Esk:

Ca-Eskolaite (Ca0.5AlSi2O6)

Ca-Ts:

Ca-Tschermackite (CaAl2SiO6)

Cpx:

potassium-free clinopyroxene solid solution

Di:

diopside (CaMgSi2O6)

Fo:

forsterite (Mg2SiO4)

GS :

alumino-silicate glass

Grs:

grossular (Ca3Al2Si3O12)

Grt:

garnet solid solution

KCpx:

potassium-bearing clinopyroxene solid solution

Kfs:

K-feldspar (KAlSi3O8)

KJd:

potassium jadeite (KAlSi2O6)

Ks:

kalsilite (K8Al8Si8O32, the formula KAlSiO4 is used in the reactions in the text for simplicity)

Ky:

kyanite (Al2SiO5)

L:

alumino-silicate melt

Lc:

leucite (KAlSi2O6)

Mc:

mica-like phases, quench products of the alumino-silicate melt

Prp:

pyrope (Mg3Al2Si3O12)

Q:

quench products of the alumino-silicate melt

SWd:

Si-wadeite (K2Si4O9)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safonov, O.G., Litvin, Y.A., Perchuk, L.L. et al. Phase relations of potassium-bearing clinopyroxene in the system CaMgSi2O6-KAlSi2O6 at 7 GPa. Contrib Mineral Petrol 146, 120–133 (2003). https://doi.org/10.1007/s00410-003-0491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0491-9

Keywords

Navigation