Skip to main content

Advertisement

Log in

Intra-oceanic production of continental crust in a Th-depleted ca. 3.0 Ga arc complex, western Superior Province, Canada

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

An Erratum to this article was published on 26 November 2003

Abstract

The English Lake magmatic complex in the western Superior Province of Canada represents a fragment of early (3.0 Ga) continental crust exposed in oblique cross section through tonalitic upper levels and subjacent quartz diorite, diorite and gabbro, which are cut by late gabbro, anorthosite and hornblendite dykes. Massive, foliated and gneissic units of tonalitic to gabbroic composition, crystallized over a 10 to 18 m.y. period, bear common geochemical attributes, including negative Th, U and Nb anomalies, and only slight LREE and LILE enrichment on NMORB-normalized trace-element profiles. Epsilon Nd values (+0.1 to +1.7) and δ18O (+6.7 to +8.0 ‰) do not co-vary with silica or other crustal contamination indices. High Mg#’s and Ni contents suggest derivation from, or interaction with mantle, and large positive anomalies for Ba, Sr and Pb, as well as high U/Th, suggest metasomatism by hydrous fluids. Trace-element profiles resemble those of primitive intra-oceanic island arc magmas except for the negative Th-U anomaly, which precludes the involvement of either oceanic (sedimentary or basaltic) or continental crust in the petrogenesis of English Lake magmas. In order to account for the unusual geochemical character of the suite, we postulate that water-rich fluids derived from subducted, sea-floor-altered serpentinite provided the flux for melting a depleted mantle wedge. Contemporaneous, proximal high Th/Nb tonalites suggest that the zone of serpentinite subduction occurred within a restricted arc segment possibly due to subduction of either: (a) a seamount chain oriented broadly perpendicular to an arc, or (b) a similarly oriented serpentinite-enclosed oceanic fracture zone or fault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A–F.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  • Arndt NT, Kerr AC, Tarney J (1997) Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts. Earth Planet Sci Lett 146:289–301

    Article  CAS  Google Scholar 

  • Bach W, Erzinger J, Dosso L, Bollinger C, Bougault H, Etoubleau J, Sauerwein J (1996) Unusually large Nb-Ta depletions in North Chile Ridge basalts at 36 degrees 50′ to 38 degrees 56′S; major element, trace element, and isotopic data. Earth Planet Sci Lett 142:223–240

    Article  CAS  Google Scholar 

  • Bacon CR, Bruggman PE, Christiansen RL, Clynne MA, Donnelly-Nolan JM, Hildreth W (1997) Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle. Can Mineral 35:397–423

    CAS  Google Scholar 

  • Bailes AH, Percival JA (2000) Geology and structure of the North Caribou Terrane—Uchi Subprovince boundary in eastern Manitoba with emphasis on volcanic and volcaniclastic rocks of the Black Island assemblage, Manitoba, In: Report of Activities 2000, Manitoba Energy and Mines, Geol Surv, pp 161–174

  • Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, Dacites and Related Rocks. Developments in Petrology Series 6, New York: Elsevier, pp 1–12

  • Barth MG, Foley SF, Horn I (2002) Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Res 113:323–340

    Article  CAS  Google Scholar 

  • BVSP (1981) Basaltic volcanism on the terrestrial planets. Pergamon, New York

  • Bédard JH (1994) A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chem Geol 118:143–153

    Google Scholar 

  • Bennett VC, Nutman AP, McCulloch MT (1993) Nd isotopic evidence for transient, highly depleted reservoirs in the early history of the Earth. Earth Planet Sci Lett 119:299–317

    Article  CAS  Google Scholar 

  • Bickle MJ (1978) Heat loss from the Earth: a constraint on Archean tectonics from the relation between geothermal gradients and the rate of plate production. Earth Planet Sci Lett 40:301–315

    Article  Google Scholar 

  • Bowring SA, Housch T (1995) The Earth’s early evolution. Science 269:153–154

    Google Scholar 

  • Brenan JM, Shaw HF, Ryerson RJ, Phinney DL (1995) Mineral-aqueous fluid partitioning of trace elements at 900 °C and 2.0 GPa: constraints on trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59:3331–3350

    CAS  Google Scholar 

  • Brocher TM, Parsons T, Trehu AM, Snelson CM, Fisher MA (2003) Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin. Geology 31:267–270

    Article  Google Scholar 

  • Conrad WK, Kay RW (1984) Ultramafic and mafic inclusions from Adak Island: Crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. J Petrol 25:88–125

    CAS  Google Scholar 

  • Corfu F, Stone D (1998) Age structure and orogenic significance of the Berens River composite batholiths, western Superior Province. Can J Earth Sci 35:1089–1109

    Article  CAS  Google Scholar 

  • DeBari SM, Coleman RG (1989) Examination of the deep levels of an island arc: Evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res 94:4373–4391

    CAS  Google Scholar 

  • Debon F, Le Fort P (1982) A chemical-mineralogical classification of common plutonic rock associations. Trans R Soc Edinburgh Earth Sci 73:135–149

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    CAS  Google Scholar 

  • DePaolo DJ (1988) Neodymium Isotope Geochemistry: An introduction. Springer, Berlin Heidelberg New York, 187 pp

    Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521

    Google Scholar 

  • Drummond MS, Defant MJ, Kepezhiskas PK (1996) Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans R Soc Edinb Earth Sci 87:205–215

    CAS  Google Scholar 

  • Duncan RA, Green DH (1987) The genesis of refractory melts in the formation of oceanic crust. Contrib Mineral Petrol 96:326–342

    CAS  Google Scholar 

  • Eiler JM, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000) Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol 41:229–256

    Article  CAS  Google Scholar 

  • Elliot T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019

    CAS  Google Scholar 

  • Ermanovics IF, Wanless RK (1983) Isotopic age studies and tectonic interpretation of Superior province in Manitoba. Geol Surv Can Pap 82-12, 17 pp

  • Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283

    CAS  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346

    CAS  Google Scholar 

  • Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53

    Article  CAS  Google Scholar 

  • Green MG, Sylvester PJ, Buick R (2000) Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics 322:69–88

    Article  CAS  Google Scholar 

  • Gregoire M, McInnes BIA, O’Reilly SY (2001) Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea Part 2. Trace element characteristics of slab-derived fluids. Lithos 59:91–108

    Article  CAS  Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N. California. Contrib Mineral Petrol 142:375–396

    CAS  Google Scholar 

  • Gust DA, Arculus RJ, Kersting AB (1997) Aspects of magma sources and processes in the Honshu arc. Can Mineral 35:347–365

    CAS  Google Scholar 

  • Hauff F, Hoernle K, van den Bogaard, Alvarado G, Garbe-Schonberg D (2000) Age and geochemistry of basaltic complexes in western Costa Rica: Contributions to the geotectonic evolution of Central America. Geochemistry Geophysics Geosystems, Am Geophys Union electronic journal, paper 1999GC000020

    Google Scholar 

  • Hawkesworth C, Turner S, Peate D, McDermott F, van Calsteren P (1997) Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chem Geol 139:207–221

    Article  CAS  Google Scholar 

  • Henry P, Stevenson R, Gariepy C (1998) Late Archean mantle composition and crustal growth in the western Superior Province of Canada: Neodymium and lead isotopic evidence from the Wawa, Quetico, and Wabigoon subprovinces. Geochim Cosmochim Acta 62:143–157

    Article  CAS  Google Scholar 

  • Henry P, Stevenson R, Laribi Y, Gariepy C (2000) Nd isotopic evidence for Early to Late Archean (3.4–2.7 Ga) crustal growth in the Western Superior Province (Ontario, Canada). Tectonophysics 322:135–151

    Article  CAS  Google Scholar 

  • Hermann J (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chem Geol 192:289–306

    Article  CAS  Google Scholar 

  • Hirose K (1997) Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25:42–44

    CAS  Google Scholar 

  • Hoffman PF, Ranalli G (1988) Archean oceanic flake tectonics. Geophys Res Lett 15:1077–1080

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationships between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    CAS  Google Scholar 

  • Huppert H, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    CAS  Google Scholar 

  • Jenner GA (1981) Geochemistry of high-Mg andesites from Cape Vogel, PNG. Chem Geol 33:307–332

    CAS  Google Scholar 

  • Jolly WT, Lidiak EG, Dickin AP, Wu TW (1998) Geochemical diversity of Mesozoic island arc tectonic blocks in eastern Puerto Rico. In: Lidiak EG, Larue DK (eds) Tectonics and Geochemistry of the Northeastern Caribbean: Boulder, Colorado, Geological Society of America Special Paper 322, pp 67–98

  • Kamber BS, Moorbath S (1998) Initial Pb of the Amitsoq gneiss revisited: implication for the timing of early Archean crustal evolution in West Greenland. Precambrian Res 150:19–41

    Article  CAS  Google Scholar 

  • Kamber BS, Ewart A, Collerson KD, Bruce MC, McDonald GD (2002) Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib Mineral Petrol 144:38–56

    CAS  Google Scholar 

  • Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol 120:1–19

    Article  CAS  Google Scholar 

  • Kerrich R, Xie Q (2002) Compositional recycling structure of an Archean super-plume: Nb-Th-U-LREE systematics of Archean komatiites and basalts revisited. Contrib Mineral Petrol 142:476–484

    CAS  Google Scholar 

  • King EM, Valley JW, Davis DW, Edwards GR (1998) Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source. Precambrian Res 92:365–387

    Article  CAS  Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmchim Acta 66:3109–3123

    Article  CAS  Google Scholar 

  • Krogh TE, Ermanovics IF, Davis GL (1974) Two episodes of metamorphism and deformation in the Archean rocks of the Canadian shield, In: Carnegie Institution of Washington, Geophysical Laboratory Yearbook, pp 573–575

  • Le Maitre RW (1989) A Classification of igneous rocks and glossary of terms. Blackwell, London, 193 pp

  • Longstaffe FJ (1979) The oxygen isotope geochemistry of Archean granitoids. In: Barker F (ed) Trondhjemites, dacites and Related Rocks. Developments in petrology, series 6. Elsevier, New York, pp 363–399

  • Longstaffe FJ, Schwarcz HP (1977) 18O/16O of Archean clastic sedimentary rocks: a petrogenetic indicator for Archean gneisses? Geochim Cosmochim Acta 41:1303–1312

    Google Scholar 

  • Longstaffe FJ, McNutt RH, Schwarcz HP (1980) Geochemistry of Archean meta-igneous rocks, Lake Despair area, Wabigoon subprovince, northwestern Ontario. Can J Earth Sci 17:1046–1063

    CAS  Google Scholar 

  • Longstaffe FJ, Gower CF (1983) Oxygen-isotope geochemistry of Archean granitoid gneisses and related rocks in the English River Subprovince, northwestern Ontario. Precambrian Res 22:203–218

    CAS  Google Scholar 

  • Ludden J, Arndt N, Francis D (1996) Preface: the evolution of mafic magmatism through time. Lithos 37:79–80

    CAS  Google Scholar 

  • MacDonald R, Hawkesworth CJ, Heath E (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth Sci Rev 49:1–76

    CAS  Google Scholar 

  • Martin H (1986) Effects of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756

    CAS  Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    CAS  Google Scholar 

  • Muehlenbachs K (1986) Alteration of the oceanic crust and the 18O history of seawater. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature processes. Rev Mineral 16. Mineral Soc Am, Washington, DC, pp 425–444

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Google Scholar 

  • Murton BJ, Peate DW, Arculus RJ, Pearce JA, van der Laan S (1992) Trace-element geochemistry of volcanic rocks from site 786: The Izu-Bonin forarc. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 125, pp 211–235

  • Nutman AP, Bennett VC, Friend CRL, Norman MD (1999) Meta-igneous (non-gneissic) tonalites and quartz-diorites from an extensive ca. 3,800 ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation. Contrib Mineral Petrol 137:364–388

    Article  CAS  Google Scholar 

  • Percival JA, Whalen JB (2000) Observations on the North Caribou terrane—Uchi subprovince interface in western Ontario and eastern Manitoba. In: Geol Surv Can Cur Res 2000-C15, 8 pp (online; http://www.nrcan.gc.ca:80/gsc/bookstore)

  • Percival JA, Bailes AH, McNicoll V (2001) Mesoarchean western margin of the Superior craton in the Lake Winnipeg area, Manitoba, In: Geol Surv Can Cur Res 2001-C16, 19 pp

  • Percival JA, Bailes AH, McNicoll V (2002) Mesoarchean breakup, Neoarchean accretion at the western Superior craton margin, Lake Winnipeg, Canada. Geol Assoc Can field trip guidebook B3

  • Percival JA, Stern RA, Rayner N (2003) Archean adakites from the Ashuanipi complex, eastern Superior Province, Canada: Geochemistry, geochronology and tectonic significance. Contrib Mineral Petrol DOI 10.1007/s00410-003-0450-5

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    CAS  Google Scholar 

  • Ravenelle JF (2001) Geochemistry of an ultramafic megabreccia, English Lake complex, Manitoba. BSc Thesis, McGill University, Montreal

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longmans, Harlow

    Google Scholar 

  • Rollinson HR (1996) Tonalite-trondhjemite-granodiorite magmatism and the genesis of the Lewisian crust during the Archaean. In: Brewer TS (ed) Precambrian crustal evolution in the North Atlantic Region. Geol Soc Spec Publ 112:25–42

    Google Scholar 

  • Rollinson HR, Tarney J (1998) The myth of element “depletion” during lower crustal metamorphism. Geol Soc Am Abstr Program, 30:394

    Google Scholar 

  • Rollinson HR, Whitehouse M (2001) Archean crustal evolution (Editorial and Preface to Special Issue). Precambrian Res 112:1–3

    Article  CAS  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Google Scholar 

  • Rupke LH, Morgan JP, Hort M, Connolly JAD (2002) Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30:1035–1038

    Google Scholar 

  • Sanborn-Barrie M, Skulski T, Parker JR (2001) Three hundred million years of tectonic history recorded by the Red Lake greenstone belt, Ontario. In: Geological Survey of Canada, current research 2001-C19, 19 pp

  • Scambelluri M, Bottazzi P, Trommsdorf V, Vannucci R, Hermann J, Gòmez-Pugnaire MT, Lòpez-Sànchez Vizcaìno V (2001a) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470

    Article  CAS  Google Scholar 

  • Scambelluri M, Rampone E, Piccardo GB (2001b) Fluid and element cycling in subducted serpentinite: a trace-element study of the Erro-Tobbio high-pressure ultramafites (western Alps, NW Italy). J Petrol 42:55–67

    Article  CAS  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and its consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    CAS  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of basaltic composition amphibolite at 1.5 to 2.0 Gpa: implications for the origin of adakites. Contrib Mineral Petrol 117:394–409

    CAS  Google Scholar 

  • Shirey SB, Hanson GN (1984) Mantle-derived Archaean monzodiorites and trachyandesites. Nature 310:222–224

    CAS  Google Scholar 

  • Shieh YN, Schwarcz HP (1978) The oxygen isotope composition of the surface crystalline rocks of the Canadian Shield. Can J Earth Sci 15:1773–1782

    CAS  Google Scholar 

  • Skelton ADL, Valley JW (2000) The relative timing of serpentinization and mantle exhumation at the ocean-continent transition, Iberia, constraints from oxygen isotopes. Earth Planet Sci Lett 178:327–338

    Article  CAS  Google Scholar 

  • Sleep NH, Windley BF (1982) Archean plate tectonics; constraints and inferences. J Geol 90:363–379

    Google Scholar 

  • Smith IEM, Worthington TJ, Price RC, Gamble JA (1997) Primitive magmas in arc-type volcanic associations: examples from the southwest Pacific. Can Mineral 35:257–273

    CAS  Google Scholar 

  • Smithies RH (2000) The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    CAS  Google Scholar 

  • Smithies RH, Champion DC (2000) The Archean high-Mg diorite suite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth. J Petrol 41:1653–1671

    Google Scholar 

  • Stein M, Hofmann AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68

    CAS  Google Scholar 

  • Stevenson RK (1995) Crust and mantle evolution in the late Archean: Evidence from a Sm-Nd isotopic study of the North Spirit Lake greenstone belt, northwestern Ontario. Geol Soc Am Bull 107:1458–1467

    Article  CAS  Google Scholar 

  • Stevenson RK, Patchett PJ (1990) Implications for the evolution of continental crust from Hf isotope systematics of Archean detrital zircons. Geochim Cosmochim Acta 54:1683–1697

    CAS  Google Scholar 

  • Stevenson RK, Henry P, Gariepy C (1999) Assimilation-fractional crystallization origin of Archean sanukitoid suites: Western Superior Province, Canada. Precambrian Res 96:83–99

    Article  CAS  Google Scholar 

  • Stone D (1998) Precambrian geology of the Berens River area, northwest Ontario. Ontario Geol Surv, Open File Rep 5963, 115 pp

  • Stone D (2000) Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, northwest Superior Province, Ontario, Canada. Can Mineral 38:455–470

    CAS  Google Scholar 

  • Stott GM (1997) The Superior Province, Canada. In: de Wit MJ, Ashwal LD (eds) Greenstone Belts. Clarendon, Oxford, pp 480–507

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42: pp 313–345

    Google Scholar 

  • Sylvester PJ (2000) Continental formation, growth and recycling (preface to special issue). Tectonophysics 322:vii-viii

    Article  Google Scholar 

  • Tarney J, Jones CE (1994) Trace element geochemistry of orogenic igneous rocks and crustal growth models. J Geol Soc Lond 151:855–868

    CAS  Google Scholar 

  • Tatsumi Y (1982) Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relationships at high pressures. Earth Planet Sci Lett 60:305–317

    CAS  Google Scholar 

  • Taylor RN, Nesbitt RW (1998) Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth Planet Sci Lett 164:79–98

    Article  CAS  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: Its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Thurston PC, Osmani IA, Stone D (1991) Northwestern Superior Province: Review and terrane analysis, In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (eds) Geology of Ontario. Ontario Geol Surv Spec vol 4, part 1, pp 81–144

  • Tomlinson KY, Stevenson RK, Hughes DJ, Hall RP, Thurston PC, Henry P (1998) The Red Lake greenstone belt, Superior Province: evidence of plume-related magmatism at 3 Ga and evidence of an older enriched source. Precambrian Res 89:59–76

    Article  CAS  Google Scholar 

  • Tomlinson KY, Davis DW, Percival JA, Hughes DJ, Thurston PC (2002) Mafic to felsic magmatism and crustal recycling in the Obanga Lake greenstone belt, western Superior Province: evidence from geochemistry, N isotopes and U-Pb geochronology. Precambrian Res 114:295–325

    Article  CAS  Google Scholar 

  • Turek A, Weber W (1991) New U-Pb zircon ages from the Rice Lake area: evidence for 3 Ga crust; In: Manitoba energy and mines, report of activities, 1991, pp 53–55

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–860

    CAS  Google Scholar 

  • Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354

    Article  CAS  Google Scholar 

  • Weaver BI, Tarney J (1980) Continental crust composition and nature of the lower crust: constraints from mantle Nd-Sr isotope correlation. Nature 286:342–346

    CAS  Google Scholar 

  • Weaver BI, Tarney J (1981) Lewisian gneiss geochemistry and Archaean crustal development models. Earth Planet Sci Lett 55:171–180

    Article  CAS  Google Scholar 

  • Weber W (1991) Geology of the English Brook area, southeastern Manitoba (NTS 62P/1); In: Manitoba energy and mines, report of activities 1990, pp 49–52

  • Whalen JB (1985) Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, P.N.G. J Petrol 26:603–632

    CAS  Google Scholar 

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2002) A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: Implications for late Archean tectonomagmatic processes. J Petrol 8:1551–1570

    Article  Google Scholar 

  • White RV, Tarney J, Kerr AC, Saunders AD, Kempton PD, Pringle MS, Klaver GT (1999) Modification of an oceanic plateau, Aruba, Dutch Caribbean: Implications for the generation of continental crust. Lithos 46:43–68

    Article  CAS  Google Scholar 

  • Williams HR, Stott GM, Thurston PC, Sutcliffe RH, Bennett G, Easton RM, Armstrong DK (1992) Tectonic evolution of Ontario: Summary and synthesis, In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (eds) Geology of Ontario. Ontario Geol Surv Spec vol 4, part 2, pp 1255–1332

  • Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115:369–383

    CAS  Google Scholar 

  • Woodhead JD, Eggins SM, Gamble JA (1993) High field strength and transition element systematics in island arc and backarc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet Sci Lett 114:491–504

    CAS  Google Scholar 

  • Woodhead JD, Eggins SM, Johnson RW (1998) Magma genesis in the New Britain island arc: Insights into melting and mass transfer processes. J Petrol 39:1641–1668

    CAS  Google Scholar 

  • Wyman DA (1999) A 2.7 Ga depleted tholeiite suite: evidence of plume-arc interaction in the Abitibi greenstone belt, Canada. Precambrian Res 97:27–42

    Article  CAS  Google Scholar 

  • Young J, Theyer P (1990) Geology of mafic-ultramafic intrusive rocks in the English Lake area (NTS 62P/1). In: Manitoba energy and mines, report of activities 1990, pp 111–113

Download references

Acknowledgements

We are grateful to the Western Superior NATMAP project for funding and to the NATMAP team for discussions. W. Davis provided very constructive reviews of two earlier versions of this manuscript. Journal reviews by B. Kamber and R.H. Smithies provided helpful suggestions for improving the manuscript. FJL thanks Kim Law and Li Huang for assistance in the stable isotope laboratory, and Natural Science and Engineering Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph B. Whalen.

Additional information

Editorial responsibility: T.L. Grove

An erratum to this article can be found at http:dx.doi.org/10.1007/s00410-003-0542-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whalen, J.B., Percival, J.A., McNicoll, V.J. et al. Intra-oceanic production of continental crust in a Th-depleted ca. 3.0 Ga arc complex, western Superior Province, Canada. Contrib Mineral Petrol 146, 78–99 (2003). https://doi.org/10.1007/s00410-003-0484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0484-8

Keywords

Navigation