Skip to main content

Advertisement

Log in

Alveolar Epithelial Type 2 Cell Dysfunction in Idiopathic Pulmonary Fibrosis

  • REVIEW
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible pulmonary interstitial disease that seriously affects the patient’s quality of life and lifespan. The pathogenesis of IPF has not been clarified, and its treatment is limited to pirfenidone and nintedanib, which only delays the decline of lung function. Alveolar epithelial type 2 (AT2) cells are indispensable in the regeneration and lung surfactant secretion of alveolar epithelial cells. Studies have shown that AT2 cell dysfunction initiates the occurrence and progression of IPF. This review expounds on the AT2 cell dysfunction in IPF, involving senescence, apoptosis, endoplasmic reticulum stress, mitochondrial damage, metabolic reprogramming, and the transitional state of AT2 cells. This article also briefly summarizes potential treatments targeting AT2 cell dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lederer DJ, Martinez FJ (2018) Idiopathic pulmonary fibrosis. N Engl J Med 379(8):797–798. https://doi.org/10.1056/NEJMc1807508

    Article  PubMed  Google Scholar 

  2. Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J et al (2015) An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med 192(2):3–19

    Article  Google Scholar 

  3. Olson AL, Gifford AH, Inase N, Fernandez PER, Suda T (2018) The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype. Eur Respir Rev 27(150):180077

    Article  Google Scholar 

  4. Parimon T, Yao C, Stripp BR, Noble PW, Chen P (2020) Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci 21(7):2269

    Article  CAS  Google Scholar 

  5. Alysandratos K-D, Russo SJ, Petcherski A, Taddeo EP, Acin-Perez R, Villacorta-Martin C et al (2021) Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Rep. https://doi.org/10.1016/j.celrep.2021.109636

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tan W, Wang Y, Chen Y, Chen C (2021) Cell tracing reveals the transdifferentiation fate of mouse lung epithelial cells during pulmonary fibrosis in vivo. Exp Ther Med. https://doi.org/10.3892/etm.2021.10622

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alder JK, Barkauskas CE, Limjunyawong N, Stanley SE, Kembou F, Tuder RM et al (2015) Telomere dysfunction causes alveolar stem cell failure. Proc Natl Acad Sci USA 112(16):5099–5104. https://doi.org/10.1073/pnas.1504780112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen H, Chen H, Liang J, Gu X, Zhou J, Xie C et al (2020) TGF-beta1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency. Exp Mol Med 52(1):130–151

    Article  CAS  Google Scholar 

  9. Yao C, Guan X, Carraro G, Parimon T, Liu X, Huang G et al (2021) Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am J Respir Crit Care Med 203(6):707–717. https://doi.org/10.1164/rccm.202004-1274OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang L, Wang Y, Pan Z, Gao S, Zou B, Lin Z et al (2018) Tetraspanin 1 inhibits TNFα-induced apoptosis via NF-κB signaling pathway in alveolar epithelial cells. Inflamm Res 67(11–12):951–964. https://doi.org/10.1007/s00011-018-1189-9

    Article  CAS  PubMed  Google Scholar 

  11. Jiang C, Liu G, Cai L, Deshane J, Antony V, Thannickal VJ et al (2021) Divergent regulation of alveolar type 2 cell and fibroblast apoptosis by plasminogen activator inhibitor 1 in lung fibrosis. Am J Pathol 191(7):1227–1239. https://doi.org/10.1016/j.ajpath.2021.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borok Z, Horie M, Flodby P, Wang H, Liu Y, Ganesh S et al (2020) Grp78 loss in epithelial progenitors reveals an age-linked role for endoplasmic reticulum stress in pulmonary fibrosis. Am J Respir Crit Care Med 201(2):198–211

    Article  Google Scholar 

  13. Tat V, Ayaub EA, Ayoub A, Vierhout M, Naiel S, Padwal MK et al (2021) FK506-binding protein 13 expression is upregulated in interstitial lung disease and correlated with clinical severity. A potentially protective role. Am J Respir Cell Mol Biol 64(2):235–246. https://doi.org/10.1165/rcmb.2020-0121OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bueno M, Brands J, Voltz L, Fiedler K, Mays B et al (2018) ATF3 represses PINK1 gene transcription in lung epithelial cells to control mitochondrial homeostasis. Aging Cell 17(2):e12720

    Article  Google Scholar 

  15. Knoell J, Chillappagari S, Knudsen L, Korfei M, Dartsch R, Jonigk D et al (2022) PACS2-TRPV1 axis is required for ER-mitochondrial tethering during ER stress and lung fibrosis. Cell Mol Life Sci 79(3):151. https://doi.org/10.1007/s00018-022-04189-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Huang W, Zheng Z, Wang W, Yuan Y, Hong Q et al (2021) Cigarette smoke-inactivated SIRT1 promotes autophagy-dependent senescence of alveolar epithelial type 2 cells to induce pulmonary fibrosis. Free Radic Biol Med 166:116–127

    Article  CAS  Google Scholar 

  17. Bindu S, Pillai VB, Kanwal A, Samant S, Mutlu GM, Verdin E et al (2017) SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage. Am J Physiol Lung Cell Mol Physiol 312(1):L68–L78. https://doi.org/10.1152/ajplung.00188.2016

    Article  PubMed  Google Scholar 

  18. Kim SJ, Cheresh P, Eren M, Jablonski RP, Yeldandi A, Ridge KM et al (2017) Klotho, an antiaging molecule, attenuates oxidant-induced alveolar epithelial cell mtDNA damage and apoptosis. Am J Physiol Lung Cell Mol Physiol 313(1):L16–L26

    Article  Google Scholar 

  19. Wu H, Yu Y, Huang H, Hu Y, Fu S, Wang Z et al (2020) Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 180(1):107. https://doi.org/10.1016/j.cell.2019.11.027

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi Y, Tata A, Konkimalla A, Katsura H, Lee RF, Ou J et al (2020) Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol 22(8):934–946. https://doi.org/10.1038/s41556-020-0542-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duerr J, Leitz DHW, Szczygiel M, Dvornikov D, Fraumann SG, Kreutz C et al (2020) Conditional deletion of Nedd4-2 in lung epithelial cells causes progressive pulmonary fibrosis in adult mice. Nat Commun 11(1):2012. https://doi.org/10.1038/s41467-020-15743-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guan S, Liu H, Zhou J, Zhang Q, Bi H (2022) The MIR100HG/miR-29a-3p/Tab1 axis modulates TGF-beta1-induced fibrotic changes in type II alveolar epithelial cells BLM-caused lung fibrogenesis in mice. Toxicol Lett. https://doi.org/10.1016/j.toxlet.2022.04.003

    Article  PubMed  Google Scholar 

  23. Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM (2014) MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-beta activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS ONE 9(12):e115596. https://doi.org/10.1371/journal.pone.0115596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yao L, Conforti F, Hill C, Bell J, Drawater L, Li J et al (2019) Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis. Cell Death Differ 26(5):943–957. https://doi.org/10.1038/s41418-018-0175-7

    Article  CAS  PubMed  Google Scholar 

  25. Gokey JJ, Snowball J, Green J, Waltamath M, Spinney JJ, Black KE et al (2021) Pretreatment of aged mice with retinoic acid supports alveolar regeneration via upregulation of reciprocal PDGFA signalling. Thorax 76(5):456–467

    Article  Google Scholar 

  26. Wilson C, Mertens TC, Shivshankar P, Bi W, Collum SD, Wareing N et al (2022) Sine oculis homeobox homolog 1 plays a critical role in pulmonary fibrosis. JCI Insight. https://doi.org/10.1172/jci.insight.142984

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tian Y, Lv J, Su Z, Wu T, Li X, Hu X et al (2021) LRRK2 plays essential roles in maintaining lung homeostasis and preventing the development of pulmonary fibrosis. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2106685118

    Article  PubMed  PubMed Central  Google Scholar 

  28. Young LR, Gulleman PM, Short CW, Tanjore H, Sherrill T, Qi A et al (2016) Epithelial–macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky–Pudlak syndrome. JCI Insight 1(17):e88947. https://doi.org/10.1172/jci.insight.88947

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hou J, Ji J, Chen X, Cao H, Tan Y, Cui Y et al (2021) Alveolar epithelial cell-derived Sonic hedgehog promotes pulmonary fibrosis through OPN-dependent alternative macrophage activation. FEBS J 288(11):3530–3546. https://doi.org/10.1111/febs.15669

    Article  CAS  PubMed  Google Scholar 

  30. Gu L, Surolia R, Larson-Casey JL, He C, Davis D, Kang J et al (2022) Targeting Cpt1a-Bcl-2 interaction modulates apoptosis resistance and fibrotic remodeling. Cell Death Differ 29(1):118–132. https://doi.org/10.1038/s41418-021-00840-w

    Article  CAS  PubMed  Google Scholar 

  31. Armanios M (2013) Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest 123(3):996–1002. https://doi.org/10.1172/JCI66370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Batenburg AA, Kazemier KM, van Oosterhout MFM, van der Vis JJ, Grutters JC, Goldschmeding R et al (2021) Telomere shortening and DNA damage in culprit cells of different types of progressive fibrosing interstitial lung disease. ERJ Open Res. https://doi.org/10.1183/23120541.00691-2020

    Article  PubMed  PubMed Central  Google Scholar 

  33. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR et al (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123(7):3025–3036. https://doi.org/10.1172/JCI68782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sisson TH, Mendez M, Choi K, Subbotina N, Courey A, Cunningham A et al (2010) Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181(3):254–263. https://doi.org/10.1164/rccm.200810-1615OC

    Article  CAS  PubMed  Google Scholar 

  35. Garcia O, Hiatt MJ, Lundin A, Lee J, Reddy R, Navarro S et al (2016) Targeted type 2 alveolar cell depletion. A dynamic functional model for lung injury repair. Am J Respir Cell Mol Biol 54(3):319–330. https://doi.org/10.1165/rcmb.2014-0246OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pfaffenbach KT, Lee AS (2011) The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol 23(2):150–156

    Article  CAS  Google Scholar 

  37. Lawson WE, Cheng DS, Degryse AL, Tanjore H, Polosukhin VV, Xu XC et al (2011) Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci USA 108(26):10562–10567. https://doi.org/10.1073/pnas.1107559108

    Article  PubMed  PubMed Central  Google Scholar 

  38. Katzen J, Wagner BD, Venosa A, Kopp M, Tomer Y, Russo SJ et al (2019) An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis. JCI Insight. https://doi.org/10.1172/jci.insight.126125

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim SJ, Cheresh P, Jablonski RP, Rachek L, Yeldandi A, Piseaux-Aillon R et al (2020) Mitochondrial 8-oxoguanine DNA glycosylase mitigates alveolar epithelial cell PINK1 deficiency, mitochondrial DNA damage, apoptosis, and lung fibrosis. Am J Physiol Lung Cell Mol Physiol 318(5):L1084–L1096

    Article  CAS  Google Scholar 

  40. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24(4):717–729. https://doi.org/10.1038/sj.emboj.7600559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weng H, Ma Y, Chen L, Cai G, Chen Z, Zhang S et al (2020) A new vision of mitochondrial unfolded protein response to the sirtuin family. Curr Neuropharmacol 18(7):613–623. https://doi.org/10.2174/1570159X18666200123165002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51

    Article  CAS  Google Scholar 

  43. Mencke R, Hillebrands JL (2017) The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev 35:124–146. https://doi.org/10.1016/j.arr.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  44. Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu MC et al (2018) alpha-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553(7689):461–466

    Article  CAS  Google Scholar 

  45. Erben RG (2018) alpha-Klotho’s effects on mineral homeostasis are fibroblast growth factor-23 dependent. Curr Opin Nephrol Hypertens 27(4):229–235

    Article  CAS  Google Scholar 

  46. Shaghaghi H, Para R, Tran C, Roman J, Ojeda-Lassalle Y, Sun J et al (2021) Glutamine restores mitochondrial respiration in bleomycin-injured epithelial cells. Free Radic Biol Med 176:335–344. https://doi.org/10.1016/j.freeradbiomed.2021.10.006

    Article  CAS  PubMed  Google Scholar 

  47. Wang S, Li X, Ma Q, Wang Q, Wu J, Yu H et al (2022) Glutamine metabolism is required for alveolar regeneration during lung injury. Biomolecules. https://doi.org/10.3390/biom12050728

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yoo HC, Yu YC, Sung Y, Han JM (2020) Glutamine reliance in cell metabolism. Exp Mol Med 52(9):1496–1516. https://doi.org/10.1038/s12276-020-00504-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tran TQ, Lowman XH, Kong M (2017) Molecular pathways: metabolic control of histone methylation and gene expression in cancer. Clin Cancer Res 23(15):4004–4009. https://doi.org/10.1158/1078-0432.CCR-16-2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F et al (2020) Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv 6(28):eaba1983. https://doi.org/10.1126/sciadv.aba1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kathiriya JJ, Wang C, Zhou M, Brumwell A, Cassandras M, Le Saux CJ et al (2022) Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5(+) basal cells. Nat Cell Biol 24(1):10–23. https://doi.org/10.1038/s41556-021-00809-4

    Article  CAS  PubMed  Google Scholar 

  52. Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I, Mayr CH et al (2020) Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun 11(1):3559. https://doi.org/10.1038/s41467-020-17358-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Liu J, Chen J, Feng T, Guo Q (2015) MiR-29 mediates TGFbeta 1-induced extracellular matrix synthesis through activation of Wnt/beta-catenin pathway in human pulmonary fibroblasts. Technol Health Care 23(Suppl 1):S119–S125. https://doi.org/10.3233/thc-150943

    Article  PubMed  Google Scholar 

  54. Yao L, Zhou Y, Li J, Wickens L, Conforti F, Rattu A et al (2021) Bidirectional epithelial–mesenchymal crosstalk provides self-sustaining profibrotic signals in pulmonary fibrosis. J Biol Chem 297(3):101096. https://doi.org/10.1016/j.jbc.2021.101096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. El-Hashash AH, Al Alam D, Turcatel G, Rogers O, Li X, Bellusci S et al (2011) Six1 transcription factor is critical for coordination of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 353(2):242–258. https://doi.org/10.1016/j.ydbio.2011.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Naikawadi RP, Disayabutr S, Mallavia B, Donne ML, Green G, La JL et al (2016) Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 1(14):e86704. https://doi.org/10.1172/jci.insight.86704

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gunther S, Fagone P, Jalce G, Atanasov AG, Guignabert C, Nicoletti F (2019) Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discov Today 24(2):428–439. https://doi.org/10.1016/j.drudis.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  58. Gunther S, Bordenave J, Hua-Huy T, Nicco C, Cumont A, Thuillet R et al (2018) Macrophage migration inhibitory factor (MIF) inhibition in a murine model of bleomycin-induced pulmonary fibrosis. Int J Mol Sci. https://doi.org/10.3390/ijms19124105

    Article  PubMed  PubMed Central  Google Scholar 

  59. Aumiller V, Balsara N, Wilhelm J, Günther A, Königshoff M (2013) WNT/β-catenin signaling induces IL-1β expression by alveolar epithelial cells in pulmonary fibrosis. Am J Respir Cell Mol Biol 49(1):96–104. https://doi.org/10.1165/rcmb.2012-0524OC

    Article  CAS  PubMed  Google Scholar 

  60. Baran CP, Opalek JM, McMaken S, Newland CA, O’Brien JM Jr, Hunter MG et al (2007) Important roles for macrophage colony-stimulating factor, CC chemokine ligand 2, and mononuclear phagocytes in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 176(1):78–89. https://doi.org/10.1164/rccm.200609-1279OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK et al (2019) Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40:554–563. https://doi.org/10.1016/j.ebiom.2018.12.052

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dahl TB, Holm S, Aukrust P, Halvorsen B (2012) Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology. Annu Rev Nutr 32:229–243. https://doi.org/10.1146/annurev-nutr-071811-150746

    Article  CAS  PubMed  Google Scholar 

  63. Lai X, Huang S, Lin S, Pu L, Wang Y, Lin Y et al (2022) Mesenchymal stromal cells attenuate alveolar type 2 cells senescence through regulating NAMPT-mediated NAD metabolism. Stem Cell Res Ther 13(1):12. https://doi.org/10.1186/s13287-021-02688-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Averyanov A, Koroleva I, Konoplyannikov M, Revkova V, Lesnyak V, Kalsin V et al (2020) First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline. Stem Cells Transl Med 9(1):6–16. https://doi.org/10.1002/sctm.19-0037

    Article  CAS  PubMed  Google Scholar 

  65. Takao S, Nakashima T, Masuda T, Namba M, Sakamoto S, Yamaguchi K et al (2021) Human bone marrow-derived mesenchymal stromal cells cultured in serum-free media demonstrate enhanced antifibrotic abilities via prolonged survival and robust regulatory T cell induction in murine bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther 12(1):506. https://doi.org/10.1186/s13287-021-02574-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xie T, Kulur V, Liu N, Deng N, Wang Y, Rowan SC et al (2021) Mesenchymal growth hormone receptor deficiency leads to failure of alveolar progenitor cell function and severe pulmonary fibrosis. Sci Adv. https://doi.org/10.1126/sciadv.abg6005

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tanaka Y, Ishitsuka Y, Hayasaka M, Yamada Y, Miyata K, Endo M et al (2015) The exacerbating roles of CCAAT/enhancer-binding protein homologous protein (CHOP) in the development of bleomycin-induced pulmonary fibrosis and the preventive effects of tauroursodeoxycholic acid (TUDCA) against pulmonary fibrosis in mice. Pharmacol Res 99:52–62. https://doi.org/10.1016/j.phrs.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  68. Winters CJ, Koval O, Murthy S, Allamargot C, Sebag SC, Paschke JD et al (2016) CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca2+-dependent apoptosis. Am J Physiol Lung Cell Mol Physiol 310(1):L86-94. https://doi.org/10.1152/ajplung.00132.2015

    Article  PubMed  Google Scholar 

  69. Yu G, Tzouvelekis A, Wang R, Herazo-Maya JD, Ibarra GH, Srivastava A et al (2018) Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat Med 24(1):39. https://doi.org/10.1038/nm.4447

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 82000065), Beijing Key Clinical Specialty Construction Project (2020–2022).

Author information

Authors and Affiliations

Authors

Contributions

WZ conceived, wrote, and edited the manuscript. CT and JZ conceived and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chunting Tan or Jie Zhang.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Tan, C. & Zhang, J. Alveolar Epithelial Type 2 Cell Dysfunction in Idiopathic Pulmonary Fibrosis. Lung 200, 539–547 (2022). https://doi.org/10.1007/s00408-022-00571-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-022-00571-w

Keywords

Navigation