Skip to main content

Advertisement

Log in

Shortened Telomere Length in Sputum Cells of Bronchiectasis Patients is Associated with Dysfunctional Inflammatory Pathways

  • BRONCHIECTASIS
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Telomere attrition is an established ageing biomarker and shorter peripheral blood leukocyte telomere length has been associated with increased risks of respiratory diseases. However, whether telomere length in disease-relevant sputum immune cells of chronic respiratory disease patients is shortened and which pathways are dysfunctional are not clear. Here we measured telomere length from sputum samples of bronchiectasis and asthmatic subjects and determined that telomere length in sputum of bronchiectasis subjects was significantly shorter (Beta =  − 1.167, PAdj = 2.75 × 10−4). We further performed global gene expression analysis and identified genes involved in processes such as NLRP3 inflammasome activation and regulation of adaptive immune cells when bronchiectasis sputum telomere length was shortened. Our study provides insights on dysfunctions related to shortened telomere length in sputum immune cells of bronchiectasis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Aliberti S, Masefield S, Polverino E, De Soyza A, Loebinger MR, Menendez R, Ringshausen FC, Vendrell M, Powell P, Chalmers JD, EMBARC Study Group (2016) Research priorities in bronchiectasis: a consensus statement from the EMBARC Clinical Research Collaboration. Eur Respir J 48(3):632–47. https://doi.org/10.1183/13993003.01888-2015

    Article  PubMed  Google Scholar 

  2. Quinn TM, Hill AT (2018) Non-cystic fibrosis bronchiectasis in the elderly: current perspectives. Clin Interv Aging 10(13):1649–1656. https://doi.org/10.2147/CIA.S143139.PMID:30237701;PMCID:PMC6136918

    Article  Google Scholar 

  3. Blackburn EH (1991) Structure and function of telomeres. Nature 350(6319):569–573. https://doi.org/10.1038/350569a0 (PMID: 1708110)

    Article  CAS  PubMed  Google Scholar 

  4. Dorajoo R, Chang X, Gurung RL, Li Z, Wang L, Wang R, Beckman KB, Adams-Haduch J, Yiamunaa M, Liu S, Meah WY, Sim KS, Lim SC, Friedlander Y, Liu J, van Dam RM, Yuan JM, Koh WP, Khor CC, Heng CK (2019) Loci for human leukocyte telomere length in the Singaporean Chinese population and trans-ethnic genetic studies. Nat Commun 10(1):2491. https://doi.org/10.1038/s41467-019-10443-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Everaerts S, Lammertyn EJ, Martens DS, De Sadeleer LJ, Maes K, van Batenburg AA, Goldschmeding R, van Moorsel CHM, Dupont LJ, Wuyts WA, Vos R, Gayan-Ramirez G, Kaminski N, Hogg JC, Janssens W, Verleden GM, Nawrot TS, Verleden SE, McDonough JE, Vanaudenaerde BM (2018) The aging lung: tissue telomere shortening in health and disease. Respir Res 19(1):95. https://doi.org/10.1186/s12931-018-0794-z.PMID:29751799;PMCID:PMC5948770

    Article  PubMed  PubMed Central  Google Scholar 

  6. Birch J, Victorelli S, Rahmatika D, Anderson RK, Jiwa K, Moisey E, Ward C, Fisher AJ, De Soyza A, Passos JF (2016) Telomere dysfunction and senescence-associated pathways in bronchiectasis. Am J Respir Crit Care Med 193(8):929–932. https://doi.org/10.1164/rccm.201510-2035LE.PMID:27082536;PMCID:PMC4849181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weng NP (2012) Telomeres and immune competency. Curr Opin Immunol 24(4):470–5. https://doi.org/10.1016/j.coi.2012.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Helby J, Nordestgaard BG, Benfield T, Bojesen SE (2017) Shorter leukocyte telomere length is associated with higher risk of infections: a prospective study of 75,309 individuals from the general population. Haematologica 102(8):1457–1465. https://doi.org/10.3324/haematol.2016.161943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kang Y, Zhang H, Zhao Y, Wang Y, Wang W, He Y, Zhang W, Zhang W, Zhu X, Zhou Y, Zhang L, Ju Z, Shi L (2018) Telomere dysfunction disturbs macrophage mitochondrial metabolism and the NLRP3 inflammasome through the PGC-1α/TNFAIP3 axis. Cell Rep 22(13):3493–3506. https://doi.org/10.1016/j.celrep.2018.02.071 (PMID: 29590618)

    Article  CAS  PubMed  Google Scholar 

  10. Chalmers JD, Goeminne P, Aliberti S, McDonnell MJ, Lonni S, Davidson J, Poppelwell L, Salih W, Pesci A, Dupont LJ, Fardon TC, De Soyza A, Hill AT (2014) The bronchiectasis severity index. An international derivation and validation study. Am J Respir Crit Care Med 189(5):576–85. https://doi.org/10.1164/rccm.201309-1575OC

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30(10):e47. https://doi.org/10.1093/nar/30.10.e47.PMID:12000852;PMCID:PMC115301

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chang X, Gurung RL, Wang L, Jin A, Li Z, Wang R, Beckman KB, Adams-Haduch J, Meah WY, Sim KS, Lim WK, Davila S, Tan P, Teo JX, Yeo KK, Yiamunaa M, Liu S, Lim SC, Liu J, van Dam RM, Friedlander Y, Koh WP, Yuan JM, Khor CC, Heng CK, Dorajoo R (2021) Low frequency variants associated with leukocyte telomere length in the Singapore Chinese population. Commun Biol 4(1):519. https://doi.org/10.1038/s42003-021-02056-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  14. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 4(12):323. https://doi.org/10.1186/1471-2105-12-323.PMID:21816040;PMCID:PMC3163565

    Article  Google Scholar 

  15. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8.PMID:25516281;PMCID:PMC4302049

    Article  PubMed  PubMed Central  Google Scholar 

  16. Giam YH, Shoemark A, Chalmers JD (2021) Neutrophil dysfunction in bronchiectasis: an emerging role for immunometabolism. Eur Respir J 58(2):2003157. https://doi.org/10.1183/13993003.03157-2020 (PMID: 33509959)

    Article  CAS  PubMed  Google Scholar 

  17. Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336(6080):481–485. https://doi.org/10.1126/science.1217141

    Article  CAS  PubMed  Google Scholar 

  18. Besnard V, Dagher R, Madjer T, Joannes A, Jaillet M, Kolb M, Bonniaud P, Murray LA, Sleeman MA, Crestani B (2018) Identification of periplakin as a major regulator of lung injury and repair in mice. JCI Insight 3(5):e90163. https://doi.org/10.1172/jci.insight.90163.PMID:29515024;PMCID:PMC5922284

    Article  PubMed Central  Google Scholar 

  19. Garantziotis S, Brezina M, Castelnuovo P, Drago L (2016) The role of hyaluronan in the pathobiology and treatment of respiratory disease. Am J Physiol Lung Cell Mol Physiol 310(9):L785-95. https://doi.org/10.1152/ajplung.00168.2015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the A*STAR CDA Grant (C210112020) and the National Medical Research Council, Ministry of Health Clinician-Scientist Individual Research Grant New Investigator Grant (CS-IRG-NIG, CNIG17nov014).

Author information

Authors and Affiliations

Authors

Contributions

RD and HFL conceptualized and contributed to study design. NST, MFL, SWLB, HFL and VA performed patient enrolment, sputum processing and clinical measurements. RD, RD, MS, YYS and IK performed genomic studies. RD, JL, CCK and LGN performed data analysis. RD, HFL and NST drafted the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajkumar Dorajoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H.F., Tan, N.S., Dehghan, R. et al. Shortened Telomere Length in Sputum Cells of Bronchiectasis Patients is Associated with Dysfunctional Inflammatory Pathways. Lung 200, 401–407 (2022). https://doi.org/10.1007/s00408-022-00535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-022-00535-0

Keywords

Navigation