Skip to main content

Advertisement

Log in

Effect of High Glucose on Human Alveolar Macrophage Phenotype and Phagocytosis of Mycobacteria

  • RESPIRATORY INFECTIONS
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Diabetes mellitus (DBM) reduces immunological activity and increases susceptibility to various infections, including tuberculosis (TB). Human alveolar macrophage (hAM) functions are altered in DBM.

Methods

To mimic hyperglycemic conditions in the lung alveolus, we co-cultured a hAM cell line (Daisy cell line) with human umbilical vein endothelial cells for 48 h in the presence of culture media alone, normal glucose (5 mM), and high glucose (22 mM). Using flow cytometry, immunophenotype characterization included cell surface markers CD 11c, CD14, CD16, CD86, CD163, CD169, CD206, CX3CR-1, CSF-1R, and matrix metalloproteinase-9 (MMP9). Phagocytic function was measured by immunofluorescence microscopy at 24 h after inoculation of cells with GFP-expressing Mycobacterium smegmatis.

Results

Direct exposure of AMs to high glucose and exposure in the co-culture system yield different results for the same phenotypic markers. MMP9 expression was increased under both conditions. CD169 and CX3CR1 expressions were decreased when AMs were exposed directly to high glucose but increased under co-culture. Immunofluorescence assay revealed that phagocytosis decreased in AMs when directly exposed to increased glucose levels from 2.5 mM to normal glucose (5 mM), yet AMs under co-culture did not show decreased phagocytosis until concentrations were raised to 25 mM.

Conclusion

Alteration in the expression of certain receptors may contribute to defective sentinel function of AMs, promoting susceptibility to TB in a diabetic host. Variability in cell surface marker expression under direct glucose exposure compared to exposure via co-culture reveals that cell signaling between endothelial cells and AMs may play a crucial role in the phenotypic expression of AMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Bar-Gal GK, Matheson C, Vernon K, Nerlich AG, Zink AR (2004) Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis 4(9):584–592. https://doi.org/10.1016/S1473-3099(04)01133-8

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (2018) Global tuberculosis report 2018. WHO, Geneva

    Google Scholar 

  3. McCarthy M (2014) Nearly one in 10 US residents has diabetes, CDC reports. BMJ 348:g3962. https://doi.org/10.1136/bmj.g3962

    Article  PubMed  Google Scholar 

  4. Hall JE (2016) Guyton and Hall textbook of medical physiology, 13th edn. Saunders, Philadelphia

    Google Scholar 

  5. Montoya-Rosales A, Castro-Garcia P, Torres-Juarez F, Enciso-Moreno JA, Rivas-Santiago B (2016) Glucose levels affect LL-37 expression in monocyte-derived macrophages altering the Mycobacterium tuberculosis intracellular growth control. Microb Pathog 97:148–153. https://doi.org/10.1016/j.micpath.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  6. Brennan AL, Gyi KM, Wood DM, Johnson J, Holliman R, Baines DL, Philips BJ, Geddes DM, Hodson ME, Baker EH (2007) Airway glucose concentrations and effect on growth of respiratory pathogens in cystic fibrosis. J Cyst Fibros 6(2):101–109. https://doi.org/10.1016/j.jcf.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  7. Kumar V, Abbas AK, Aster JC (2015) Robbins & Cotran pathologic basis of disease. Robbins pathology, 9th edn. Elsevier Health Sciences, London

    Google Scholar 

  8. Young B, Woodford P, O’Dowd G (2014) Wheater’s functional histology: a text and colour atlas. Elsevier, Amsterdam

    Google Scholar 

  9. Chavez-Galan L, Olleros ML, Vesin D, Garcia I (2015) Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol 6:263. https://doi.org/10.3389/fimmu.2015.00263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cai Y, Sugimoto C, Arainga M, Alvarez X, Didier ES, Kuroda MJ (2014) In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J Immunol 192(6):2821–2829. https://doi.org/10.4049/jimmunol.1302269

    Article  CAS  PubMed  Google Scholar 

  11. Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015:816460. https://doi.org/10.1155/2015/816460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hayman Y, Hart S, Morice A (2014) Characterisation of a new Daisy cell line representative of human alveolar macrophage (hAM). Eur Respir J 38:3859

    Google Scholar 

  13. Ruslami R, Aarnoutse RE, Alisjahbana B, van der Ven AJ, van Crevel R (2010) Implications of the global increase of diabetes for tuberculosis control and patient care. Trop Med Int Health (TM&IH) 15(11):1289–1299. https://doi.org/10.1111/j.1365-3156.2010.02625.x

    Article  Google Scholar 

  14. Li H, Peng W, Jian W, Li Y, Li Q, Li W, Xu Y (2012) ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion. Cardiovasc Diabetol 11:65. https://doi.org/10.1186/1475-2840-11-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. American Diabetes Association (2016) Standards of medical care in diabetes—2016 abridged for primary care providers. Clin Diabetes 34(1):3–21. https://doi.org/10.2337/diaclin.34.1.3

    Article  PubMed Central  Google Scholar 

  16. de Prost N, Saumon G (2007) Glucose transport in the lung and its role in liquid movement. Respir Physiol Neurobiol 159(3):331–337. https://doi.org/10.1016/j.resp.2007.02.014

    Article  CAS  PubMed  Google Scholar 

  17. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514. https://doi.org/10.3389/fimmu.2014.00514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall JD, Kurtz SL, Rigel NW, Gunn BM, Taft-Benz S, Morrison JP, Fong AM, Patel DD, Braunstein M, Kawula TH (2009) The impact of chemokine receptor CX3CR1 deficiency during respiratory infections with Mycobacterium tuberculosis or Francisella tularensis. Clin Exp Immunol 156(2):278–284. https://doi.org/10.1111/j.1365-2249.2009.03882.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wolf Y, Yona S, Kim KW, Jung S (2013) Microglia, seen from the CX3CR1 angle. Front Cell Neurosci 7:26. https://doi.org/10.3389/fncel.2013.00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu YR, Hotten DF, Malakhau Y, Volker E, Ghio AJ, Noble PW, Kraft M, Hollingsworth JW, Gunn MD, Tighe RM (2016) Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. Am J Respir Cell Mol Biol 54(1):13–24. https://doi.org/10.1165/rcmb.2015-0146OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cicek BB, Khanna KM (2016) Discovery of a novel subset of lung resident macrophages that regulate pathogen clearance and immune homeostasis after respiratory infection. J Immunol 196:68.61–68.61

    Google Scholar 

  22. Bogie JF, Boelen E, Louagie E, Delputte P, Elewaut D, van Horssen J, Hendriks JJ, Hellings N (2017) CD169 is a marker for highly pathogenic phagocytes in multiple sclerosis. Mult Scler 24(3):290–300. https://doi.org/10.1177/1352458517698759

    Article  CAS  PubMed  Google Scholar 

  23. Wang XW, Liu JJ, Wu QN, Wu SF, Hao DJ (2017) The in vitro and in vivo effects of microRNA-133a on intervertebral disc destruction by targeting MMP9 in spinal tuberculosis. Life Sci 188:198–205. https://doi.org/10.1016/j.lfs.2017.07.022

    Article  CAS  PubMed  Google Scholar 

  24. Coussens A, Timms PM, Boucher BJ, Venton TR, Ashcroft AT, Skolimowska KH, Newton SM, Wilkinson KA, Davidson RN, Griffiths CJ, Wilkinson RJ, Martineau AR (2009) 1alpha,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology 127(4):539–548. https://doi.org/10.1111/j.1365-2567.2008.03024.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jager NA, Wallis de Vries BM, Hillebrands JL, Harlaar NJ, Tio RA, Slart RH, van Dam GM, Boersma HH, Zeebregts CJ, Westra J (2016) Distribution of matrix metalloproteinases in human atherosclerotic carotid plaques and their production by smooth muscle cells and macrophage subsets. Mol Imaging Biol 18(2):283–291. https://doi.org/10.1007/s11307-015-0882-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Dr. Nicolai van Oers (UT Southwestern) for supplying the GFP-expressing M. smegmatis. This study was supported by Texas Tech University Health Sciences Center (US) (Grant No. Mini SARP Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Cervantes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1 (DOCX 132 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vance, J., Santos, A., Sadofsky, L. et al. Effect of High Glucose on Human Alveolar Macrophage Phenotype and Phagocytosis of Mycobacteria. Lung 197, 89–94 (2019). https://doi.org/10.1007/s00408-018-0181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-018-0181-z

Keywords

Navigation