Skip to main content
Log in

Gender Differences in the Association of Individual and Contextual Exposures with Lung Function in a Rural Canadian Population

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

To investigate the association of individual and contextual exposures with lung function by gender in rural-dwelling Canadians.

Methods

A cross-sectional mail survey obtained completed questionnaires on exposures from 8263 individuals; a sub-sample of 1609 individuals (762 men, 847 women) additionally participated in clinical lung function testing. The three dependent variables were forced expired volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. Independent variables included smoking, waist circumference, body mass index, indoor household exposures (secondhand smoke, dampness, mold, musty odor), occupational exposures (grain dust, pesticides, livestock, farm residence), and socioeconomic status. The primary analysis was multiple linear regression, conducted separately for each outcome. The potential modifying influence of gender was tested in multivariable models using product terms between gender and each independent variable.

Results

High-risk waist circumference was related to reduced FVC and FEV1 for both genders, but the effect was more pronounced in men. Greater pack-years smoking was associated with lower lung function values. Exposure to household smoke was related to reduced FEV1, and exposure to livestock, with increased FEV1. Lower income adequacy was associated with reduced FVC and FEV1.

Conclusion

High-risk waist circumference was more strongly associated with reduced lung function in men than women. Longitudinal research combined with rigorous exposure assessment is needed to clarify how sex and gender interact to impact lung function in rural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For brevity sake, we use the term gender throughout the rest of the paper; however, we recognize that the effects of sex and gender on human health are complexly interwoven throughout the life course [19].

References

  1. Kannel W, Hubert H, Lew E (1983) Vital capacity as a predictor of cardiovascular disease: the framingham study. Am Heart J 105:311–315

    Article  CAS  PubMed  Google Scholar 

  2. Mannino D, Buist A, Petty T et al (2003) Lung function and mortality in the United States: data from the first national health and nutrition examination survey follow-up study. Thorax 58(5):388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Canoy D, Pekkanen J, Elliott P et al (2007) Early growth and adult respiratory function in men and women followed from the fetal period to adulthood. Thorax 62(5):396–402

    Article  PubMed  Google Scholar 

  4. Mirabelli MC, Preisser JS, Loehr LR et al (2016) Lung function decline over 25 years of follow-up among black and white adults in the ARIC study cohort. Respir Med 113:57–64

    Article  PubMed  Google Scholar 

  5. Eisner MD, Wang Y, Haight TJ et al (2007) Secondhand smoke exposure, pulmonary function, and cardiovascular mortality. Ann Epidemiol 17(5):364–373

    Article  PubMed  Google Scholar 

  6. Canoy D, Luben R, Welch A et al (2004) Abdominal obesity and respiratory function in men and women in the EPIC-norfolk study, United Kingdom. Am J Epidemiol 159(12):1140–1149

    Article  CAS  PubMed  Google Scholar 

  7. Hegewald MJ, Crapo RO (2007) Socioeconomic status and lung function. Chest 132:1608–1614

    Article  PubMed  Google Scholar 

  8. Pahwa P, Senthilselvan A, McDuffie HH et al (2003) Longitudinal decline in lung function measurements among Saskatchewan grain workers. Can Respir J 10:135–141

    Article  PubMed  Google Scholar 

  9. Huy T, De Schipper K, Chan-Yeung M, Kennedy SM (1991) Grain dust and lung function. Dose–response relationships. Am Rev Respir Dis 144:1314–1321

    Article  CAS  PubMed  Google Scholar 

  10. Wang XR, Zhang HX, Sun BX et al (2005) A 20-year follow-up study on chronic respiratory effects of exposure to cotton dust. Eur Respir J 26(5):881–886

    Article  PubMed  Google Scholar 

  11. Becklake M, Kauffmann F (1999) Gender differences in airway behaviour over the human life span. Thorax 54(12):1119–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krieger N (2003) Genders, sexes, and health: what are the connections–and why does it matter? Int J Epidemiol 32(4):652–657

    Article  PubMed  Google Scholar 

  13. Eng A, Mannetje AT, McLean D et al (2011) Gender differences in occupational exposure patterns. Occup Environ Med 68(12):888–894

    Article  PubMed  Google Scholar 

  14. Statistics Canada (2011) Census of Agriculture. Highlights and analysis. Statistics Canada, Ottawa

    Google Scholar 

  15. Schenker MB, Christiani D, Cormier Y et al (1998) American thoracic society: respiratory health hazards in agriculture. Am J Respir Crit Care Med 158:S1–S76

    Article  Google Scholar 

  16. Habib RR, Hojeij S, Elzein K (2014) Gender in occupational health research of farmworkers: a systematic review. Am J Ind Med 57(12):1344–1367

    Article  PubMed  Google Scholar 

  17. McDuffie HH, Pahwa P, Dosman JA (1992) Respiratory health status for 3098 Canadian grain workers studied longitudinally. Am J Ind Med 20:753–762

    Article  Google Scholar 

  18. Gan WQ, Man SP, Postma DS et al (2006) Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Res 7(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  19. Springer KW, Stellman JM, Jordan-Young RM (2012) Beyond a catalogue of differences: a theoretical frame and good practice guidelines for researching gender in human health. Soc Sci Med 74(11):1817–1824

    Article  PubMed  Google Scholar 

  20. Pahwa P, Karunanayake CP, Hagel L et al (2012) The Saskatchewan rural health study: an application of a population health framework to understand respiratory health outcomes. BMC Res Notes 5:400

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dillman DA (2000) Mail and internet surveys: the tailored design method, 2nd edn. Wiley, New York

    Google Scholar 

  22. Statement of the American Thoracic Society (1987) Standardization of spirometry: 1987 update. Am Rev Resp Dis 136:1285–1298

    Article  Google Scholar 

  23. Canada Health (2003) Canadian guidelines for body weight classification in adults. Office of Nutrition Policy and Promotion, Ottawa

    Google Scholar 

  24. Statistics Canada (2008) National population health survey household component: documentation for the derived variables and the constant longitudinal variables. Statistics Canada, Ottawa

    Google Scholar 

  25. Chen Y, Rennie D, Cormier YF, Dosman J (2007) Waist circumference is associated with pulmonary function in normal-weight, overweight, and obese subjects. Am J Clin Nutr 85:35–39

    CAS  PubMed  Google Scholar 

  26. Ochs-Balcom HM, Grant BJB, Muti P et al (2006) Pulmonary function and abdominal adiposity in the general population. Chest 129:853–862

    Article  PubMed  Google Scholar 

  27. Harik-Khan RI, Wise RA, Fleg JL (2001) The effect of gender on the relationship between body fat distribution and lung function. J Clin Epidemiol 54:399–406

    Article  CAS  PubMed  Google Scholar 

  28. Steele R, Finucane F, Griffin S et al (2008) Obesity is associated with altered lung function independently of physical activity and fitness. Obesity 17:578–584

    Article  PubMed  Google Scholar 

  29. James AL, Palmer LJ, Kicic E et al (2005) Decline in lung function in the Busselton Health Study: the effects of asthma and cigarette smoking. Am J Respir Crit Care Med 171(2):109–114

    Article  PubMed  Google Scholar 

  30. Chen Y, Horne SL, Dosman JA (1991) Increased susceptibility to lung dysfunction in female smokers. Am Rev Respir Dis 143:1224–1230

    Article  CAS  PubMed  Google Scholar 

  31. Kohansal R, Martinez-Camblor P, Agusti A et al (2009) The natural history of chronic airflow obstruction revisited: an analysis of the Framingham Offspring cohort. Am J Respir Crit Care Med 180:3–10

    Article  PubMed  Google Scholar 

  32. Xu X, Dockery DW, Ware JH et al (1992) Effects of cigarette smoking on rate of loss of pulmonary function in adults: a longitudinal assessment. Am Rev Respir Dis 146:1345–1348

    Article  CAS  PubMed  Google Scholar 

  33. Jaakkola MS, Jaakkola JJ (2002) Effects of environmental tobacco smoke on the respiratory health of adults. Scand J Work Environ Health 28(2):52–70

    PubMed  Google Scholar 

  34. Eisner MD (2002) Environmental tobacco smoke exposure and pulmonary function among adults in NHANES III: impact on the general population and adults with current asthma. Environ Health Perspect 110(8):765–770

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mendell MJ, Mirer AG, Cheung K et al (2011) Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect 119:748–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hernberg S, Sripaiboonkij P, Quansah R et al (2014) Indoor molds and lung function in healthy adults. Respir Med 108:677–684

    Article  PubMed  Google Scholar 

  37. Norback D, Zock JP, Plana E et al (2013) Lung function decline in relation to mould and dampness in the home: the longitudinal European community respiratory health survey ECRHS II. Thorax 66:396–401

    Article  Google Scholar 

  38. Rennie D, Chen Y, Lawson J et al (2005) Different effect of damp housing on respiratory health in women. J Am Med Women Assoc 60:46–51

    Google Scholar 

  39. Melenka LS, Hessel PA, Yoshida K et al (1999) Lung health in Alberta farmers. Int J Tuberc Lung Dis 3:913–919

    CAS  PubMed  Google Scholar 

  40. McDuffie HH, Pahwa P, Dosman JA (1992) Respiratory health status for 3098 Canadian grain workers studied longitudinally. Am J Ind Med 20:753–762

    Article  Google Scholar 

  41. Kennedy S, Loehoorn M (2003) Exposure assessment in epidemiology: does gender matter? Am J Ind Med 44:576–583

    Article  PubMed  Google Scholar 

  42. Messing K, Punnett L, Bond M et al (2003) Be the fairest of them all: challenges and recommendations for the treatment of gender in occupational health research. Am J Ind Med 43:618–629

    Article  PubMed  Google Scholar 

  43. Quinn MM (2011) Why do women and men have different occupational exposures? Occup Environ Med 68(12):861–862

    Article  PubMed  Google Scholar 

  44. Dimich-Ward H, Beking K, DyBuncio A et al (2012) Occupational exposure influences on gender differences in respiratory health. Lung 190(2):147–154

    Article  PubMed  Google Scholar 

  45. Schachter EN, Zuskin E, Moshier EL et al (2009) Gender and respiratory findings in workers occupationally exposed to organic aerosols: a meta-analysis of 12 cross-sectional studies. Environ Health 8(1):1–33

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lai PS, Hang JQ, Zhang FY et al (2013) Gender differences in the effect of occupational endotoxin exposure on impaired lung function and death: the shanghai textile worker study. Occup Environ Med 19:152–157

    Google Scholar 

  47. Lai PS, Hang JQ, Valeri L et al (2015) Endotoxin and gender modify lung function recovery after occupational organic dust exposure: a 30-year study. Occup Environ Med 72:546–552

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heederik D, Smit LA (2014) Gender differences in lung function recovery after cessation of occupational endotoxin exposure: a complex story. Occup Environ Med 72:543–544

    Article  Google Scholar 

  49. Kirychuk SP, Senthilselvan A, Dosman JA et al (2003) Respiratory symptoms and lung function in poultry confinement workers in Western Canada. Can Respir J 10(7):375–380

    Article  PubMed  Google Scholar 

  50. Radon K, Weber C, Iversen M et al (2001) Exposure assessment and lung function in pig and poultry farmers. Occup Environ Med 58:405–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Senthilselvan A, Dosman JA, Kirychuk P et al (1997) Accelerated lung function decline in swine confinement workers. Chest 111:1733–1741

    Article  CAS  PubMed  Google Scholar 

  52. Leynaert B, Neukirch C, Jarvis D et al (2001) Does living on a farm during childhood protect against asthma, allergic rhinitis, and atopy in adulthood? Am J Respir Crit Care Med 164(10):1829–1834

    Article  CAS  PubMed  Google Scholar 

  53. Lampi J, Canoy D, Jarvis D et al (2011) Farming environment and prevalence of atopy at age 31: prospective birth cohort study in Finland. Clin Exp Allergy 41(7):987–993

    Article  CAS  PubMed  Google Scholar 

  54. Lampi J, Koskela H, Hartikainen AL et al (2015) Farm environment during infancy and lung function at the age of 31: a prospective birth cohort study in Finland. BMJ Open 5(7):e007350

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chenard L, Senthiselvan A, Grover V et al (2007) Lung function and farm size predict healthy worker effect in swine farmers. Chest 131:245–254

    Article  PubMed  Google Scholar 

  56. Gray LA, Leyland AH, Benzeval M, Watt GC (2013) Explaining the social patterning of lung function in adulthood at different ages: the roles of childhood precursors, health behaviours and environmental factors. J Epidemiol Community Health 67(11):905–911

    Article  PubMed  PubMed Central  Google Scholar 

  57. McFadden E, Luben R, Wareham N et al (2009) How far can we explain the social class differential in respiratory function? A cross-sectional population study of 21,991 men and women from EPIC-Norfolk. Eur J Epidemiol 24(4):193–201

    Article  PubMed  Google Scholar 

  58. Bartley M, Kelly Y, Sacker A (2012) Early life financial adversity and respiratory function in midlife: a prospective birth cohort study. Am J Epidemiol 175(1):33–42

    Article  PubMed  Google Scholar 

  59. Tennant PW, Gibson GJ, Pearce MS (2008) Lifecourse predictors of adult respiratory function: results from the Newcastle thousand families study. Thorax 63(9):823–830

    Article  CAS  PubMed  Google Scholar 

  60. Wong SL, Shields M, Leatherdale S et al (2012) Assessment of validity of self-reported smoking status. Health Rep 23(1):47

    PubMed  Google Scholar 

  61. Avila-Tang E, Elf JL, Cummings KM et al (2012) Assessing secondhand smoke exposure with reported measures. Tob Control 22:156–163

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jaakkola MS, Jaakkola JJ (2004) Indoor molds and asthma in adults. Adv Appl Microbiol 55:309–338

    Article  PubMed  Google Scholar 

  63. Teschke K, Olshan AF, Daniels JL et al (2002) Occupational exposure assessment in case-control studies: opportunities for improvement. Occup Environ Med 59(9):575–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Camp PG, Dimich-Ward H, Kennedy SM (2004) Women and occupational lung disease: sex differences and gender influences on research and disease outcomes. Clin Chest Med 25(2):269–279

    Article  PubMed  Google Scholar 

  65. Rothman KJ, Gallacher JE, Hatch EE (2013) Why representativeness should be avoided. Int J Epidemiol 42(4):1012–1014

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Saskatchewan Rural Health Study Team consists of James Dosman, MD (Designated Principal Investigator, University of Saskatchewan, Saskatoon, SK Canada); Dr. Punam Pahwa, PhD (Co-principal Investigator, University of Saskatchewan, Saskatoon SK Canada); Dr. John Gordon, PhD (Co-principal Investigator, University of Saskatchewan, Saskatoon SK Canada); Yue Chen, PhD (University of Ottawa, Ottawa Canada); Roland Dyck, MD (University of Saskatchewan, Saskatoon SK Canada); Louise Hagel (Project Manager, University of Saskatchewan Saskatoon SK Canada); Bonnie Janzen, PhD (University of Saskatchewan, Saskatoon SK Canada); Chandima Karunanayake, PhD (University of Saskatchewan, Saskatoon SK Canada); Shelley Kirychuk, PhD (University of Saskatchewan, Saskatoon SK Canada); Niels Koehncke, MD (University of Saskatchewan, Saskatoon SK Canada); Joshua Lawson, PhD, (University of Saskatchewan, Saskatoon SK Canada); William Pickett, PhD (Queen’s University, Kingston ON Canada); Roger Pitbaldo, PhD (Professor Emeritus, Laurentian University, Sudbury ON Canada); Donna Rennie, RN, PhD, (University of Saskatchewan, Saskatoon SK Canada); and Ambikaipakan Senthilselvan, PhD (University of Alberta, Edmonton, AB, Canada). We are grateful for the contributions of the rural municipality administrators and the community leaders of the towns included in the study that facilitated access to the study populations and to all of participants who donated their time to complete and return the survey.

Funding

Canadian Institutes of Health Research MOP-187209-POP-CCAA-11829.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Bonnie Janzen.

Ethics declarations

Conflicts of Interest

None.

Additional information

The Saskatchewan Rural Health Study Team are listed in “Acknowledgments.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janzen, B., Karunanayake, C., Rennie, D. et al. Gender Differences in the Association of Individual and Contextual Exposures with Lung Function in a Rural Canadian Population. Lung 195, 43–52 (2017). https://doi.org/10.1007/s00408-016-9950-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9950-8

Keywords

Navigation