Skip to main content

Advertisement

Log in

The Interaction of Glucocorticoids and Progesterone Distinctively Affects Epithelial Sodium Transport

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Glucocorticoids and progesterone exert stimulatory effects on epithelial Na+ transport, including increased mRNA expression of the participating ion transporters (epithelial Na+ channels [ENaC] and Na,K-ATPases) and their electrophysiological activity. Fetuses threatened by preterm labor may receive high doses of glucocorticoids to stimulate lung maturation and are naturally exposed to high levels of female sex steroids. However, it is still unknown how the combination of both hormones influences the epithelial Na+ transport, which is crucial for alveolar fluid clearance.

Methods

Fetal distal lung epithelial cells were incubated in media supplemented with dexamethasone and progesterone. Real-time qPCR and Ussing chamber analysis were used to determine the effects on ENaC mRNA expression and channel activity. In addition, the specific progesterone receptor antagonist (PF-02367982) and the glucocorticoid receptor antagonist mifepristone were used to identify the involved hormone receptors.

Results

Both dexamethasone and progesterone increased ENaC subunit expression and channel activity. However, the combination of dexamethasone and progesterone reduced the α- and γ-ENaC subunit expression compared to the effect of dexamethasone alone. Furthermore, higher dexamethasone concentrations in combination with progesterone also significantly reduced Na+ transport in Ussing chamber measurements. Hormone receptor antagonists showed that inhibition of the progesterone receptor increased the mRNA expression of α- and γ-ENaC, whereas mifepristone decreased mRNA expression of all ENaC subunits.

Conclusion

Glucocorticoids and progesterone individually increase ENaC mRNA expression; however, the combination of both hormones decreases the stimulatory effects of dexamethasone on Na+ transport and ENaC mRNA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McCray PB Jr, Bettencourt JD, Bastacky J (1992) Developing bronchopulmonary epithelium of the human fetus secretes fluid. Am J Physiol Lung Cell Mol Physiol 262:L270–L279

    CAS  Google Scholar 

  2. Matalon S, O’Brodovich H (1999) Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance. Annu Rev Physiol 61:627–661

    Article  CAS  PubMed  Google Scholar 

  3. O’Brodovich HM (1996) Immature epithelial Na + channel expression is one of the pathogenetic mechanisms leading to human neonatal respiratory distress syndrome. Proc Assoc Am Physicians 108(5):345–355

    PubMed  Google Scholar 

  4. Helve O, Pitkänen OM, Andersson S, O’Brodovich H, Kirjavainen T, Otulakowski G (2004) Low expression of human epithelial sodium channel in airway epithelium of preterm infants with respiratory distress. Pediatrics 113(5):1267–1272

    Article  PubMed  Google Scholar 

  5. Summa V, Mordasini D, Roger F, Bens M, Martin PY, Vandewalle A, Verrey F, Féraille E (2001) Short term effect of aldosterone on Na, K-ATPase cell surface expression in kidney collecting duct cells. J Biol Chem 276(50):47087–47093

    Article  CAS  PubMed  Google Scholar 

  6. Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC (1996) Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 12(3):325–328

    Article  CAS  PubMed  Google Scholar 

  7. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na + channel is made of three homologous subunits. Nature 367(6462):463–467

    Article  CAS  PubMed  Google Scholar 

  8. O’Brodovich H (1991) Epithelial ion transport in the fetal and perinatal lung. Am J Physiol 261(4 Pt 1):C555–C564

    PubMed  Google Scholar 

  9. Siew ML, Wallace MJ, Allison BJ, Kitchen MJ, Te Pas AB, Islam MS et al (2013) The role of lung inflation and sodium transport in airway liquid clearance during lung aeration in newborn rabbits. Pediatr Res 73(4):443–449

    Article  CAS  PubMed  Google Scholar 

  10. Folkesson HG, Norlin A, Wang Y, Abedinpour P, Matthay MA (2000) Dexamethasone and thyroid hormone pretreatment upregulate alveolar epithelial fluid clearance in adult rats. J Appl Physiol 88(2):416–424

    CAS  PubMed  Google Scholar 

  11. Mustafa SB, DiGeronimo RJ, Petershack JA, Alcorn JL, Seidner SR (2003) Postnatal glucocorticoids induce α-ENaC formation and regulate glucocorticoid receptors in the preterm rabbit lung. Am J Physiol Lung Cell Mol Physiol 286:L73–L80

    Article  PubMed  Google Scholar 

  12. Bland RD (2001) Loss of liquid from the lung lumen in labor: more than a simple “squeeze”. Am J Physiol Lung Cell Mol Physiol 280(4):L602–L605

    CAS  PubMed  Google Scholar 

  13. Finley N, Norlin A, Baines DL, Folkesson HG (1998) Alveolar epithelial fluid clearance is mediated by endogenous catecholamines at birth in guinea pigs. J Clin Invest 101(5):972–981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Trotter A, Ebsen M, Kiossis E, Meggle S, Küppers E, Beyer C, Pohlandt F, Maier L, Thome UH (2006) Prenatal estrogen and progesterone deprivation impairs alveolar formation and fluid clearance in newborn piglets. Pediatr Res 60(1):60–64

    Article  CAS  PubMed  Google Scholar 

  15. Stevenson DK, Verter J, Fanaroff AA, Oh W, Ehrenkranz RA, Shankaran S et al (2000) Sex differences in outcomes of very low birthweight infants: the newborn male disadvantage. Arch Dis Child Fetal Neonatal Ed 83:F182–F185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hallman M, Haataja R (2003) Genetic influences and neonatal lung disease. Semin Neonatol 8(1):19–27

    Article  PubMed  Google Scholar 

  17. Rubaltelli FF, Bonafe L, Tangucci M, Spagnolo A, Dani C (1998) Epidemiology of neonatal acute respiratory disorders. A multicenter study on incidence and fatality rates of neonatal acute respiratory disorders according to gestational age, maternal age, pregnancy complications and type of delivery. Biol Neonate 74(1):7–15

    Article  CAS  PubMed  Google Scholar 

  18. Laube M, Küppers E, Thome UH (2011) Modulation of sodium transport in alveolar epithelial cells by estradiol and progesterone. Pediatr Res 69(3):200–205

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura K, Stokes JB, Mc Cray PB Jr (2002) Endogenous and exogenous glucocorticoid regulation of ENaC mRNA expression in developing kidney and lung. Am J Physiol Cell Physiol 283:762–772

    Article  Google Scholar 

  20. Thome UH, Davis IC, Nguyen SV, Shelton BJ, Matalon S (2003) Modulation of sodium transport in fetal alveolar epithelial cells by oxygen and corticosterone. Am J Physiol Lung Cell Mol Physiol 284(2):L376–L385

    Article  CAS  PubMed  Google Scholar 

  21. Von Langen J, Fritzemeier KH, Diekmann S, Hillisch A (2005) Molecular basis of the interaction specificity between the human glucocorticoid receptor and its endogenous steroid ligand cortisol. ChemBioChem 6(6):1110–1118

    Article  Google Scholar 

  22. Shao R, Egecioglu E, Weijdegård B, Ljungström K, Ling C, Fernandez-Rodriguez J, Billig H (2006) Developmental and hormonal regulation of progesterone receptor A-form expression in female mouse lung in vivo: interaction with glucocorticoid receptors. J Endocrinol 190(3):857–870

    Article  CAS  PubMed  Google Scholar 

  23. Pearce D, Yamamoto KR (1993) Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Science 259(5098):1161–1165

    Article  CAS  PubMed  Google Scholar 

  24. Liu W, Wang J, Sauter NK, Pearce D (1995) Steroid receptor heterodimerization demonstrated in vitro and in vivo. Proc Natl Acad Sci USA 92(26):12480–12484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA (1999) The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J Biol Chem 274(39):27857–27866

    Article  CAS  PubMed  Google Scholar 

  26. Vegeto E, Shahbaz MM, Wen DX, Goldman ME, O’Malley BW, McDonnell DP (1993) Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol Endocrinol 7(10):1244–1255

    CAS  PubMed  Google Scholar 

  27. Pujols L, Mullol J, Pérez M, Roca-Ferrer J, Juan M, Xaubet A, Cidlowski JA, Picado C (2001) Expression of the human glucocorticoid receptor a and b isoforms in human respiratory epithelial cells and their regulation by dexamethasone. Am J Respir Cell Mol Biol 24(1):49–57

    Article  CAS  PubMed  Google Scholar 

  28. Jassal D, Han RN, Caniggia I, Post M, Tanswell AK (1991) Growth of distal fetal rat lung epithelial cells in a defined serum-free medium. Vitro Cell Dev Biol 27A(8):625–632

    Article  CAS  Google Scholar 

  29. Sweezey N, Tchepichev S, Gagnon S, Fertuck K, O’Brodovich H (1998) Female gender hormones regulate mRNA levels and function of the rat lung epithelial Na channel. Am J Physiol 274:C379–C386

    CAS  PubMed  Google Scholar 

  30. Cadepond F, Ulmann A, Baulieu EE (1997) RU486 (mifepristone): mechanisms of action and clinical uses. Annu Rev Med 48:129–156

    Article  CAS  PubMed  Google Scholar 

  31. de Giorgio-Miller A, Bungay P, Tutt M, Owen J, Goodwin D, Pullen N (2008) The translational pharmacology of a novel, potent, and selective nonsteroidal progesterone receptor antagonist, 2-[4-(4-cyano-phenoxy)-3,5-dicyclopropyl-1H-pyrazol-1-yl]-N-methylacetamide (PF-02367982). J Pharmacol Exp Ther 327(1):78–87

    Article  PubMed  Google Scholar 

  32. Lazrak A, Samanta A, Venetsanou K, Barbry P, Matalon S (2000) Modification of biophysical properties of lung epithelial Na(+) channels by dexamethasone. Am J Physiol Cell Physiol 279:C762–C770

    CAS  PubMed  Google Scholar 

  33. Tchepichev S, Ueda J, Canessa C, Rossier BC, O´Brodovich H (1995) Lung epithelial Na channel subunits are differentially regulated during development and by steroids. Am J Physiol 269(3 Pt 1):C805–C812

    CAS  PubMed  Google Scholar 

  34. Venkatesh VC, Katzberg HD (1997) Glucocorticoid regulation of epithelial sodium channel genes in human fetal lung. Am J Physiol 273(1 Pt 1):L227–L233

    CAS  PubMed  Google Scholar 

  35. Snyder PM, Olson DR, Thomas BC (2002) Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na + channel. J Biol Chem 277(1):5–8

    Article  CAS  PubMed  Google Scholar 

  36. Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP (2002) Glucocorticoid-stimulated lung epithelial Na+ transport is associated with regulated ENaC and sgk1 expression. Am J Physiol Lung Cell Mol Physiol 282:L631–L641

    Article  CAS  PubMed  Google Scholar 

  37. Wright AP, McEwan IJ, Dahlman-Wright K, Gustafsson JA (1991) High level expression of the major transactivation domain of the human glucocorticoid receptor in yeast cells inhibits endogenous gene expression and cell growth. Mol Endocrinol 5(10):1366–1372

    Article  CAS  PubMed  Google Scholar 

  38. Beato M, Klug J (2000) Steroid hormone receptors: an update. Hum Reprod Update 6(3):225–236

    Article  CAS  PubMed  Google Scholar 

  39. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79(3):407–414

    Article  CAS  PubMed  Google Scholar 

  40. Kalinyak JE, Dorin RI, Hoffman AR, Perlman AJ (1987) Tissue-specific regulation of glucocorticoid receptor mRNA by dexamethasone. J Biol Chem 262(22):10441–10444

    CAS  PubMed  Google Scholar 

  41. Pujols L, Mullol J, Torrego A, Picado C (2004) Glucocorticoid receptors in human airways. Allergy 59(10):1042–1052

    Article  CAS  PubMed  Google Scholar 

  42. Whorwood CB, Donovan SJ, Wood PJ, Phillips DI (2001) Regulation of glucocorticoids receptor alpha and beta isoforms and type I 11beta-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J Clin Endocrinol Metab 85(5):2296–2308

    Google Scholar 

  43. Matthay MA, Clerici C, Saumon G (2002) Invited Review: active fluid clearance from the distal air spaces of the lung. J Appl Physiol 93:1533–1541

    Article  CAS  PubMed  Google Scholar 

  44. Jesse NM, McCartney J, Feng X, Richards EM, Wood CE, Keller-Wood M (2009) Expression of ENaC subunits, chloride channels, and aquaporins in ovine fetal lung: ontogeny of expression and effects of altered fetal cortisol concentrations. Am J Physiol Regul Integr Comp Physiol 297:R453–R461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Smith DF, Faber LE, Toft DO (1990) Purification of unactivated progesterone receptor and identification of novel receptor-associated proteins. J Biol Chem 265(7):3996–4003

    CAS  PubMed  Google Scholar 

  46. Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC (2004) Increased airway epithelial Na + absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10(5):487–493

    Article  CAS  PubMed  Google Scholar 

  47. Sayegh R, Auerbach SD, Li X, Loftus RW, Husted RF, Stokes JB, Thomas CP (1999) Glucocorticoid induction of epithelial sodium channel expression in lung and renal epithelia occurs via trans-activation of a hormone response element in the 5´-flanking region of the human epithelial sodium channel a subunit gene. J Biol Chem 274:12431–12437

    Article  CAS  PubMed  Google Scholar 

  48. McNicholas CM, Canessa CM (1997) Diversity of channels generated by different combinations of epithelial sodium channel subunits. J Gen Physiol 109(6):681–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Schmidt M, Renner C, Löffler G (1998) Progesterone inhibits glucocorticoid-dependent aromatase induction in human adipose fibroblasts. J Endocrinol 158(3):401–407

    Article  CAS  PubMed  Google Scholar 

  50. Attardi BJ, Zeleznik A, Simhan H, Chiao JP, Mattison DR, Caritis SN (2007) Comparison of progesterone and glucocorticoid receptor binding and stimulation of gene expression by progesterone, 17-alpha hydroxyprogesterone caproate, and related progestins. Am J Obstet Gynecol 197(6):599.e1–599.e7

    Article  Google Scholar 

  51. McDonnell DP, Shahbaz MM, Vegeto E, Goldman ME (1994) The human progesterone receptor A-form functions as a transcriptional modulator of mineralocorticoid receptor transcriptional activity. J Steroid Biochem Mol Biol 48(5–6):425–432

    Article  CAS  PubMed  Google Scholar 

  52. McDonnell DP (1995) Unraveling the human progesterone receptor signal transduction pathway: insights into antiprogestin action. Trends Endocrinol Metab 6(4):133–138

    Article  CAS  PubMed  Google Scholar 

  53. Wen DX, Xu YF, Mais DE, Goldman ME, Mc Donnell DF (1994) The A and B isoforms of the human progesterone receptor operate through distinct signaling pathways within target cells. Mol Cell Biol 14(12):8356–8364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Sylvia Taube, Maike Ziegler, and Jessica Schneider for excellent technical assistance. The specific PR antagonist PF-02367982 was kindly provided by Pfizer. All animal care and experimental procedures were approved by the responsible authority (Landesdirektion Leipzig).

Conflict of interest

No Grants or conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandy Laube.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, C., Klammt, J., Thome, U.H. et al. The Interaction of Glucocorticoids and Progesterone Distinctively Affects Epithelial Sodium Transport. Lung 192, 935–946 (2014). https://doi.org/10.1007/s00408-014-9640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-014-9640-3

Keywords

Navigation