Skip to main content
Log in

Value of Impedance Cardiography in Patients Studied for Pulmonary Hypertension

  • Published:
Lung Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the accuracy and precision of impedance cardiography as a method for noninvasive hemodynamic evaluation of patients with pulmonary hypertension (PH). We performed a prospective and blinded study of patients who underwent right heart catheterization (RHC) for evaluation of known or presumed PH at the University of Florida from August 2009 to March 2010. The cohort consisted of a total of 39 patients (age = 57 ± 14 years, 87% women) with presumed (23%) or confirmed PH (77%) of different etiologies. Patients underwent RHC and impedance cardiography using the PhysioFlow PF-05. The PhysioFlow PF-05 measures cardiac output (CO) and LV end-diastolic volume (LVEDV), among other parameters. The median pulmonary artery pressure was 36 (IQR 26-56) mmHg. The CO (mean ± SD) by thermodilution (CO-T) and by impedance cardiography (CO-IC) was 5.9 ± 2.2 and 5.6 ± 1.5 L/min, respectively. Bland-Altman analysis of CO-T versus CO-IC revealed a mean of 0.3 L/min (95% LoA: −2.2 to +2.8). In patients with PH, the correlation of CO-T and CO-IC had a mean of 0.4 L/min (95% LoA: 2.9 and −2.2). Pulmonary artery occlusion pressure (PAOP) correlated with LVEDV (R 2 = 0.2, p = 0.005). By ROC analysis, EDV ≥ 200 ml had a sensitivity of 53% and a specificity of 86% for PAOP > 15 mmHg (AUC = 0.78). In patients with PH, impedance cardiography had good accuracy and fair precision for CO determination when compared with thermodilution. Impedance cardiography may provide information about the preload status and has the potential to become a cost-effective and noninvasive method for the follow-up of patients with PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CO:

Cardiac output

LVEDV:

Left ventricular end-diastolic volume

PH:

Pulmonary hypertension

PAOP:

Pulmonary artery occlusion pressure

PAP:

Pulmonary artery pressure

PVR:

Pulmonary vascular resistance

SVi:

Stroke volume index

References

  1. Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A et al (2009) Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 Suppl):S55–S66

    Article  PubMed  Google Scholar 

  2. Tonelli AR, Alnuaimat H, Mubarak K (2010) Pulmonary vasodilator testing and use of calcium channel blockers in pulmonary arterial hypertension. Respir Med 104(4):481–496

    Article  PubMed  Google Scholar 

  3. Swiston JR, Johnson SR, Granton JT (2010) Factors that prognosticate mortality in idiopathic pulmonary arterial hypertension: a systematic review of the literature. Respir Med 104(11):1588–1607

    Article  PubMed  Google Scholar 

  4. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR et al (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 119(16):2250–2294

    Article  PubMed  Google Scholar 

  5. Ventetuolo CE, Benza RL, Peacock AJ, Zamanian RT, Badesch DB, Kawut SM (2008) Surrogate and combined end points in pulmonary arterial hypertension. Proc Am Thorac Soc 5(5):617–622

    Article  PubMed  Google Scholar 

  6. Roberts K, Preston I, Hill NS (2006) Pulmonary hypertension trials: current end points are flawed, but what are the alternatives? Chest 130(4):934–936

    Article  PubMed  Google Scholar 

  7. Lasater M, Von Rueden KT (2003) Outpatient cardiovascular management utilizing impedance cardiography. AACN Clin Issues 14(2):240–250

    Article  PubMed  Google Scholar 

  8. Parry MJ, McFetridge-Durdle J (2006) Ambulatory impedance cardiography: a systematic review. Nurs Res 55(4):283–291

    Article  PubMed  Google Scholar 

  9. Sodolski T, Kutarski A (2007) Impedance cardiography: a valuable method of evaluating haemodynamic parameters. Cardiol J 14(2):115–126

    PubMed  Google Scholar 

  10. Bour J, Kellett J (2008) Impedance cardiography: a rapid and cost-effective screening tool for cardiac disease. Eur J Intern Med 19(6):399–405

    Article  PubMed  Google Scholar 

  11. Richard R, Lonsdorfer-Wolf E, Charloux A, Doutreleau S, Buchheit M, Oswald-Mammosser M et al (2001) Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol 85(3–4):202–207

    Article  PubMed  CAS  Google Scholar 

  12. Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML (2003) Impedance cardiography: the next vital sign technology? Chest 123(6):2028–2033

    Article  Google Scholar 

  13. Tan KH, Lai FO, Hwang NC (2006) Measurement of cardiac output using Physio Flow with different positions of electrode placement. Singapore Med J 47(11):967–970

    PubMed  CAS  Google Scholar 

  14. Charloux A, Lonsdorfer-Wolf E, Richard R, Lampert E, Oswald-Mammosser M, Mettauer B et al (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol 82(4):313–320

    Article  PubMed  CAS  Google Scholar 

  15. Tonelli AR, Mubarak KK, Li N, Carrie R, Alnuaimat H (2011) Effect of balloon inflation volume on pulmonary artery occlusion pressure in patients with and without pulmonary hypertension. Chest 139(1):115–121

    Article  PubMed  Google Scholar 

  16. Sommers MS, Woods SL, Courtade MA (1993) Issues in methods and measurement of thermodilution cardiac output. Nurs Res 42(4):228–233

    Article  PubMed  CAS  Google Scholar 

  17. Capan LM, Bernstein DP, Patel KP, Sanger J, Turndorf H (1987) Measurement of ejection fraction by a bioimpedance method. Crit Care Med 15:402

    Article  Google Scholar 

  18. Hsu AR, Barnholt KE, Grundmann NK, Lin JH, McCallum SW, Friedlander AL (2006) Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia. J Appl Physiol 100(6):2031–2040

    Article  PubMed  CAS  Google Scholar 

  19. Sageman WS, Riffenburgh RH, Spiess BD (2002) Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vasc Anesth 16(1):8–14

    Article  PubMed  Google Scholar 

  20. Albert NM, Hail MD, Li J, Young JB (2004) Equivalence of the bioimpedance and thermodilution methods in measuring cardiac output in hospitalized patients with advanced, decompensated chronic heart failure. Am J Crit Care 13(6):469–479

    PubMed  Google Scholar 

  21. Barin E, Haryadi DG, Schookin SI, Westenskow DR, Zubenko VG, Beliaev KR et al (2000) Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization. Crit Care Med 28(3):698–702

    Article  PubMed  CAS  Google Scholar 

  22. Fuller HD (1992) The validity of cardiac output measurement by thoracic impedance: a meta-analysis. Clin Invest Med 15(2):103–112

    PubMed  CAS  Google Scholar 

  23. Haynes G, Moreau X, Rousseau J, Thiranos J, Dubè L (2006) Cardiac output with a new bioimpedance monitor: comparison with thermodilution methods. Anesthesiology 105:A470

    Google Scholar 

  24. Yung GL, Fedullo PF, Kinninger K, Johnson W, Channick RN (2004) Comparison of impedance cardiography to direct Fick and thermodilution cardiac output determination in pulmonary arterial hypertension. Congest Heart Fail 10(2 Suppl 2):7–10

    Article  PubMed  Google Scholar 

  25. LaMantia KR, O’Connor T, Barash PG (1990) Comparing methods of measurement: an alternative approach. Anesthesiology 72(5):781–783

    Article  PubMed  CAS  Google Scholar 

  26. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15(2):85–91

    Article  PubMed  CAS  Google Scholar 

  27. Summers RL, Shoemaker WC, Peacock WF, Ander DS, Coleman TG (2003) Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med 10(6):669–680

    Article  PubMed  Google Scholar 

  28. Shoemaker WC, Belzberg H, Wo CC, Milzman DP, Pasquale MD, Baga L et al (1998) Multicenter study of noninvasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest 114(6):1643–1652

    Article  PubMed  CAS  Google Scholar 

  29. Drazner MH, Thompson B, Rosenberg PB, Kaiser PA, Boehrer JD, Baldwin BJ et al (2002) Comparison of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol 89(8):993–995

    Article  PubMed  Google Scholar 

  30. Kamath SA, Drazner MH, Tasissa G, Rogers JG, Stevenson LW, Yancy CW (2009) Correlation of impedance cardiography with invasive hemodynamic measurements in patients with advanced heart failure: the BioImpedance CardioGraphy (BIG) substudy of the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) Trial. Am Heart J 158(2):217–223

    Article  PubMed  Google Scholar 

  31. Hansen RM, Viquerat CE, Matthay MA, Wiener-Kronish JP, DeMarco T, Bahtia S et al (1986) Poor correlation between pulmonary arterial wedge pressure and left ventricular end-diastolic volume after coronary artery bypass graft surgery. Anesthesiology 64(6):764–770

    Article  PubMed  CAS  Google Scholar 

  32. Sadauskas S, Naudziunas A, Gargasas L, Ruseckas R, Jurkoniene R (2006) Evaluation of systolic pressure in pulmonary artery by using impedance cardiography method. Medicina (Kaunas) 42(6):464–471

    Google Scholar 

  33. Woltjer HH, Bogaard HJ, Bronzwaer JG, de Cock CC, de Vries PM (1997) Prediction of pulmonary capillary wedge pressure and assessment of stroke volume by noninvasive impedance cardiography. Am Heart J 134(3):450–455

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the patients who participated in this study and to the nurses and technicians at University of Florida Cardiac Catheterization Laboratory for their invaluable assistance. We thank Len Leon, Jim Gunnerson, and Frank Bour, MD, for their technical assistance with the PhysioFlow PF-05 device.

Disclosure

The authors have no significant conflicts of interest with any companies or organization whose products or services are discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano R. Tonelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonelli, A.R., Alnuaimat, H., Li, N. et al. Value of Impedance Cardiography in Patients Studied for Pulmonary Hypertension. Lung 189, 369–375 (2011). https://doi.org/10.1007/s00408-011-9299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-011-9299-y

Keywords

Navigation