Skip to main content

Advertisement

Log in

Serum Protein Profiling of Smear-Positive and Smear-Negative Pulmonary Tuberculosis Using SELDI-TOF Mass Spectrometry

  • Published:
Lung Aims and scope Submit manuscript

Abstract

The focus of this study was to detect novel sera biomarkers for smear-positive and smear-negative pulmonary tuberculosis and to establish respective diagnostic models using the surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF MS) technique. A total of 155 sera samples from smear-positive pulmonary tuberculosis (SPPTB) and smear-negative pulmonary tuberculosis (SNPTB) patients and non-tuberculosis (non-TB) controls were analyzed with SELDI-TOF MS. The study was divided into a preliminary training set and a blinded testing set. A classification tree of spectra derived from 31 SPPTB patients, 22 SNPTB patients, and 42 non-TB controls were used to develop an optimal classification tree that discriminated them respectively in the training set. Then, the validity of the classification tree was challenged with another independent blinded testing set, which included 20 SPPTB patients, 14 SNPTB patients, and 26 non-TB controls. SNPTB patients and non-TB controls also were analyzed alone using the same method. The optimal decision tree model with a panel of nine biomarkers with mass:charge ratios (m/z) of 4821.45, 3443.22, 9284.93, 4473.86, 4702.84, 3443.22, 5343.26, 3398.27, and 3193.61 determined in the training set could detect 93.55%, 95.46%, and 88.09% accuracy for classifying SPPTB patients, SNPTB patients, and non-TB controls specimens, respectively. Validation of an independent, blinded testing set gave an accuracy of 80.77% for controls, 75.00% for SPPTB, and 71.43% for SNPTB samples using the same classification tree. With the peaks displaying differences between SNPTB patients and non-TB controls, a simplified dendrogram (m/z 4821.45, 4792.74) demonstrated classification efficacy of 85.94% (sensitivity 86.36% and specificity 85.71%) for distinguishing SNPTB patients from non-TB controls. The independent blinded testing set containing 14 SNPTB patients and 26 non-TB controls gained an accuracy of 81.59% (sensitivity 78.57% and specificity 84.62%) for diagnosing SNPTB. Special proteins/peptides may change in SPPTB and SNPTB patients and those changes may be used to distinguish them with the proper discriminant analytical method and to pursue and identify some involved proteins underlying the biological process of tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Organization. Global tuberculosis control 2009-epidemiology, strategy, financing. http://www.who.int/tb/publications/global_report/2009/en/index.html

  2. Maher D, Chalet P, Spinaci S, Harries AD (1997) Treatment of tuberculosis: guidelines for national programmes, 2nd edn. WHO, Geneva

    Google Scholar 

  3. Soto A, Solari L, Agapito J, Acuna-Villaorduna C, Lambert ML, Gotuzzo E et al (2008) Development of a clinical scoring system for the diagnosis of smear-negative pulmonary tuberculosis. Braz J Infect Dis 12:128–132

    Article  PubMed  Google Scholar 

  4. Colebunders R, Bastian I (2000) A review of diagnosis and treatment of smear-negative pulmonary tuberculosis. Int J Tuberc Lung Dis 4:97–107

    CAS  PubMed  Google Scholar 

  5. World Health Organization. Improving the diagnosis and treatment of smear-negative pulmonary and extrapulmonary tuberculosis among adults and adolescents. http://www.who.int/entity/tb/publications/2006/tbhiv_recommendations.pdf

  6. Steingart KR, Dendukuri N, Henry M, Schiller I, Nahid P, Hopewell PC et al (2009) Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: a meta-analysis. Clin Vaccine Immunol 16:260–276

    Article  CAS  PubMed  Google Scholar 

  7. Imaz MS, Schmelling MF, Kaempfer S, Spallek R, Singh M (2008) Serodiagnosis of tuberculosis: specific detection of free and complex-dissociated antibodies anti-mycobacterium tuberculosis recombinant antigens. Braz J Infect Dis 12:234–244

    Article  PubMed  Google Scholar 

  8. Garg SK, Tiwari RP, Tiwari D, Singh R, Malhotra D, Ramnani VK et al (2003) Diagnosis of tuberculosis: available technologies, limitations, and possibilities. J Clin Lab Anal 17:155–163

    Article  CAS  PubMed  Google Scholar 

  9. Weinberger SR, Dalmasso EA, Fung ET (2001) Current achievements using ProteinChip array technology [review]. Curr Opin Chem Biol 6:86–91

    Article  Google Scholar 

  10. Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry [review]. Electrophoresis 21:1164–1167

    Article  CAS  PubMed  Google Scholar 

  11. Tang N, Tornatore P, Weinberger SR (2004) Current developments in SELDI affinity technology. Mass Spectrom Rev 23:34–44

    Article  CAS  PubMed  Google Scholar 

  12. Zhukov TA, Johanson RA, Cantor AB, Clark RA, Tockman MS (2003) Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 40:267–279

    PubMed  Google Scholar 

  13. Won Y, Song HJ, Kang TW, Kim JJ, Han BD, Lee S (2003) Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics 3:2310–2316

    Article  CAS  PubMed  Google Scholar 

  14. Lehrer S, Roboz J, Ding H, Zhao S, Diamond EJ, Holland JF et al (2003) Putative protein markers in the sera of men with prostatic neoplasms. BJU Int 92:223–225

    Article  CAS  PubMed  Google Scholar 

  15. Liotta LA, Ferrari M, Petricoin E (2003) Written in blood. Nature 425(6961):905

    Article  CAS  PubMed  Google Scholar 

  16. Petricoin EF, Belluco C, Araujo RP, Liotta LA (2006) The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer 6(12):961–967

    Article  CAS  PubMed  Google Scholar 

  17. Stone JH, Rajapakse VN, Hoffman GS, Specks U, Merkel PA, Spiera RF et al (2005) A serum proteomic approach to gauging the state of remission in Wegener’s granulomatosis. Arth Rheum 52:902–910

    Article  Google Scholar 

  18. Wadsworth JT, Somers KD, Cazares LH, Malik G, Adam BL, Stack BC et al (2004) Serum protein profiles to identify head and neck cancer. Clin Cancer Res 10:1625–1632

    Article  CAS  PubMed  Google Scholar 

  19. Kang XX, Xu Y, Wu XY, Liang Y, Wang C, Guo J et al (2005) Proteomic fingerprints for potential application to early diagnosis of severe acute respiratory syndrome. Clin Chem 51:56–64

    Article  CAS  PubMed  Google Scholar 

  20. Papadopoulos MC, Abel PM, Agranoff D, Stich A, Tarelli E, Bell BA et al (2004) A novel and accurate diagnostic test for human African trypanosomiasis. Lancet 363(9418):1358–1363

    Article  PubMed  Google Scholar 

  21. Agranoff D, Fernandez-Reyes D, Papadopoulos MC, Rojas SA, Herbster M, Loosemore A et al (2006) Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. Lancet 368(9540):1012–1021

    Article  CAS  PubMed  Google Scholar 

  22. Seny D, Fillet M, Meuwis MA, Geurts P, Lutteri L, Ribbens C et al (2005) Discovery of new rheumatoid arthritis biomarkers using the Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry ProteinChip approach. Arth Rheum 52(12):3801–3812

    Article  CAS  Google Scholar 

  23. Kanmura S, Uto H, Kusumoto K, Ishida Y, Hasuike S, Nagata K et al (2007) Early diagnostic potential for hepatocellular carcinoma using the SELDI ProteinChip system. Hepatology 45:948–956

    Article  CAS  PubMed  Google Scholar 

  24. World Health Organization (2001) Revised international definitions in tuberculosis control. Int J Tuberc Lung Dis 5:213–215

    Google Scholar 

  25. Abebe F, Holm-Hansen C, Wiker HG, Bjune G (2007) Progress in serodiagnosis of Mycobacterium tuberculosis infection [review]. Scand J Immunol 66(2–3):176–191

    Article  CAS  PubMed  Google Scholar 

  26. Kanaya AM, Glidden DV, Chambers HF (2001) Identifying pulmonary tuberculosis in patients with negative sputum smear results. Chest 120:349–355

    Article  CAS  PubMed  Google Scholar 

  27. Demissie A, Wassie L, Abebe M, Aseffa A, Rook G, Zumla A et al (2006) VACSEL Study Group. The 6-kilodalton early secreted antigenic target-responsive, asymptomatic contacts of tuberculosis patients express elevated levels of interleukin-4 and reduced levels of gamma interferon. Infect Immun 74:2817–2822

    Article  CAS  PubMed  Google Scholar 

  28. Jamil B, Shahid F, Hasan Z, Nasir N, Razzaki T, Dawood G et al (2007) Interferon gamma/IL10 ratio defines the disease severity in pulmonary and extrapulmonary tuberculosis. Tuberculosis (Edinb) 87:279–287

    Article  CAS  Google Scholar 

  29. Pathan AA, Wilkinson KA, Klenerman P, McShane H, Davidson RN, Pasvol G et al (2001) Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J Immunol 167:5217–5225

    CAS  PubMed  Google Scholar 

  30. Vekemans J, Lienhardt C, Sillah JS, Wheeler JG, Lahai GP, Doherty MT et al (2001) Tuberculosis contacts but not patients have higher gamma interferon responses to ESAT-6 than do community controls in The Gambia. Infect Immun 69(10):6554–6557

    Article  CAS  PubMed  Google Scholar 

  31. Zhang M, Lin Y, Iyer DV, Gong J, Abrams JS, Barnes PF (1995) T-cell cytokine responses in human infection with Mycobacterium tuberculosis. Infect Immun 63:3231–3234

    CAS  PubMed  Google Scholar 

  32. Meuleman W, Engwegen JY, Gast MC, Beijnen JH, Reinders MJ, Wessels LF (2008) Comparison of normalisation methods for surface-enhanced laser desorption and ionisation (SELDI) time-of-flight (TOF) mass spectrometry data. BMC Bioinformatics 9:88

    Article  PubMed  CAS  Google Scholar 

  33. Diamandis EP (2003) Point: proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem 49:1272–1275

    Article  CAS  PubMed  Google Scholar 

  34. Baggerly KA, Morris JS, Coombes KR (2004) Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20:777–785

    Article  CAS  PubMed  Google Scholar 

  35. Ransohoff DF (2005) Lessons from controversy: ovarian cancer screening and serum proteomics. J Natl Cancer Inst 97:315–319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants #30425007, 30370627, 30670921 from National Natural Science Foundation of China and 00-722 and 06-834 from China Medical Board of New York to Dr. Fuqiang Wen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Wen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Chen, X., Hu, C. et al. Serum Protein Profiling of Smear-Positive and Smear-Negative Pulmonary Tuberculosis Using SELDI-TOF Mass Spectrometry. Lung 188, 15–23 (2010). https://doi.org/10.1007/s00408-009-9199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-009-9199-6

Keywords

Navigation