Skip to main content

Advertisement

Log in

Inhibition of HA Synthase 3 mRNA Expression, with a Phosphodiesterase 3 Inhibitor, Blocks Lung Injury in a Septic Ventilated Rat Model

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Low-molecular-weight hyaluronan produced by hyaluronan synthase 3 (HAS3) has been shown to play a role in acute lung injury secondary to high-tidal-volume ventilation. Phosphodiesterase 3 inhibitors have been shown to decrease HAS3 expression. We hypothesized that low-molecular-weight hyaluronan (LMW HA) produced by HAS3 mediates LPS-induced lung injury in the mechanically ventilated rat and that milrinone (MIL), by blocking HAS3 mRNA expression, would prevent the injury. Rats were randomized to four groups: controls with mechanical ventilation at 7 cc/kg MV, MV+LPS, MV+MIL, and MV+LPS+MIL. Rats were intubated and ventilated without PEEP for 4 h. Lipopolysaccharide (LPS) (1 mg/kg) was infused into the arterial line 1 h prior to MV. MIL 10 μg/kg/min (or an equivalent volume of saline) was infused through the venous line at the beginning of MV. Bronchoalveolar lavage fluid (BAL) was collected after 4 h of ventilation and lungs were saved for histopathology. LPS significantly increased neutrophil infiltration and protein concentration in the BAL and augmented lung injury score on histology. MIL significantly lowered alveolar protein and neutrophil infiltration as well as lung injury in response to LPS. Furthermore, MIL decreased the mRNA expression for HAS3 and MIP2 in lung tissue and decreased the protein content in BAL. MIL, a commonly used inotropic agent, inhibited LPS-induced lung inflammation and lung injury in mechanically ventilated rats. The anti-inflammatory properties of MIL may be mediated by inhibition of HAS3 and/or MIP2 and could be beneficial in the treatment of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weigel PH, Hascall VC, Tammi M (1997) Hyaluronan synthases. J Biol Chem 272:13997–14000

    Article  PubMed  CAS  Google Scholar 

  2. Goentzel BJ, Weigel PH, Steinberg RA (2006) Recombinant human hyaluronan synthase 3 is phosphorylated in mammalian cells. Biochem J 39:347–354

    Google Scholar 

  3. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092

    Article  PubMed  CAS  Google Scholar 

  4. Itano N, Kimata K (2002) Mammalian hyaluronan synthases. IUBMB Life 54:195–199. doi:10.1080/15216540214929

    Article  PubMed  CAS  Google Scholar 

  5. McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, Noble PW (1996) Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest 98:2403–2413

    Article  PubMed  CAS  Google Scholar 

  6. Noble PW, McKee CM, Cowman M, Shin HS (1996) Hyaluronan fragments activate an NF-kappa B/I-kappa B alpha autoregulatory loop in murine macrophages. J Exp Med 183:2373–2378

    Article  PubMed  CAS  Google Scholar 

  7. Laurent TC, Laurent UB, Fraser JR (1996) Serum hyaluronan as a disease marker. Ann Med 28:241–253

    Article  PubMed  CAS  Google Scholar 

  8. Hällgren R, Samuelsson T, Laurent TC, Modig J (1989) Accumulation of hyaluronan (hyaluronic acid) in the lung in adult respiratory distress syndrome. Ann Rev Respir Dis 139:682–687

    Google Scholar 

  9. Bai KJ, Spicer AP, Mascarenhas MM, Yu L, Ochoa CD, Garg HG, Quinn DA (2005) The role of hyaluronan synthase 3 in ventilator-induced lung injury. Am J Respir Crit Care Med 172:92–98

    Article  PubMed  Google Scholar 

  10. Evans DB (1989) Overview of cardiovascular physiologic and pharmacologic aspects of selective phosphodiesterase peak III inhibitors. Am J Cardiol 63:9A–11A

    Article  PubMed  CAS  Google Scholar 

  11. Dent G, White SR, Tenor H, Bodtke K, Schudt C, Leff AR, Magnussen H, Rabe KF (1998) Cyclic nucleotide phosphodiesterase in human bronchial epithelial cells: characterization of isoenzymes and functional effects of PDE inhibitors. Pulm Pharmacol Ther 11(1):47–56

    Article  PubMed  CAS  Google Scholar 

  12. Ueki N, Taguchi T, Takahashi M, Adachi M, Ohkawa T, Amuro Y, Hada T, Higashino K (2000) Inhibition of hyaluronan synthesis by vesnarinone in cultured human myofibroblasts. Biochim Biophys Acta 1495:160–167

    Article  PubMed  CAS  Google Scholar 

  13. Simons RK, Maier RV, Chi EY (1991) Pulmonary effects of continuous endotoxin infusion in the rat. Circ Shock 33:233–243

    PubMed  CAS  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  15. Barton P, Garcia J, Kouatli A, Kitchen L, Zorka A, Lindsay C, Lawless S, Giroir B (1996) Hemodynamic effects of IV milrinone lactate in pediatric patients with septic shock. A prospective, double blinded, randomized, placebo-controlled, interventional study. Chest 109:1302–1312

    Article  PubMed  CAS  Google Scholar 

  16. Irazuzta JE, Pretzlaff RK, Rowin ME (2001) Amrinone in pediatric refractory septic shock: An open-label pharmacodynamic study. Pediatr Crit Care 2:24–28

    Article  Google Scholar 

  17. Rich N, West N, McMaster P, Alexander J (2003) Milrinone in meningococcal sepsis. Pediatr Crit 4:394–395

    Article  Google Scholar 

  18. Fan Chung K (2006) Phosphodiesterase inhibitors in airways disease. Eur J Pharmacol 533:110–117

    Article  PubMed  Google Scholar 

  19. Schudt C, Winder S, Forderkunz S, Hatzelmann A, Ullrich V (1991) Influence of selective phosphodiesterase inhibitors on human neutrophil functions and levels of cAMP and Cai. Naunyn Schmiedebergs Arch Pharmacol 344:682–690

    Article  PubMed  CAS  Google Scholar 

  20. Spicer AP, Tien JY (2004) Hyaluronan and morphogenesis. Birth Defects Res C Embryo Today 72:89–108

    Article  PubMed  CAS  Google Scholar 

  21. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173–1179

    Article  PubMed  CAS  Google Scholar 

  22. Mohamadzadeh M, DeGrendele H, Arizpe H, Estess P, Siegelman M (1998) Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion. J Clin Invest 101:97–108

    Article  PubMed  CAS  Google Scholar 

  23. Turley EA, Noble PW, Bourguignon LY (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277:4589–4592

    Article  PubMed  CAS  Google Scholar 

  24. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111

    Article  PubMed  CAS  Google Scholar 

  25. Fitzgerald KA, Bowie AG, Skeffington BS, O’Neill LA (2000) Ras, protein kinase C zeta, and I kappa B kinases 1 and 2 are downstream effectors of CD44 during the activation of NF- kappa B by hyaluronic acid fragments in T-24 carcinoma cells. J Immunol 164:2053–2063

    PubMed  CAS  Google Scholar 

  26. Li LF, Ouyang B, Choukroun G, Matyal R, Mascarenhas M, Jafari B, Bonventre JV, Force T, Quinn DA (2003) Stretch-induced IL-8 depends on c-Jun NH2-terminal and nuclear factor-kappa-inducing kinases. Am J Physiol Lung Cell Mol Physiol 285:L464–L465

    PubMed  CAS  Google Scholar 

  27. Horton MR, Shapiro S, Bao C, Lowenstein CJ, Noble PW (1999) Induction and regulation of macrophage metalloelastase by hyaluronan fragments in mouse macrophages. J Immunol 162:4171–4176

    PubMed  CAS  Google Scholar 

  28. Mikawa K, Akamatsu H, Nishina K, Shiga M, Maekawa N, Obara H, Niwa Y (2000) The effect of phosphodiesterase III inhibitors on human neutrophil function. Crit Care Med 28:1001–1005

    Article  PubMed  CAS  Google Scholar 

  29. Eisner MD, Thompson T, Hudson LD, Luce JM, Hayden D, Schoenfeld D, Matthay MA (2001) Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 164:231–236

    PubMed  CAS  Google Scholar 

  30. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334

    PubMed  CAS  Google Scholar 

  31. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM (2004) Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873

    Article  PubMed  Google Scholar 

  32. Csoka TB, Frost GI, Stern R (1997) Hyaluronidase in tissue invasion. Invasion Metastasis 17:297–311

    PubMed  CAS  Google Scholar 

  33. Mendoza G, Alvarez AI, Pulido MM, Molina AJ, Merino G, Real R, Fernandes P, Prieto JG (2007) Inhibitory effects of different antioxidants on hyaluronan depolymerization. Carbohydr Res 342:96–102

    Article  PubMed  CAS  Google Scholar 

  34. Jones NA, Boswell SV, Lever R, Page CP (2005) The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro. Pulm Pharmacol Ther 18:93–101

    Article  PubMed  CAS  Google Scholar 

  35. Howell RE, Jenkins LP, Howell DE, Howell (1995) Inhibition of lipopolysaccharide-induced pulmonary edema by isozyme-selective phosphodiesterase inhibitors in guinea pigs. J Pharmacol Exp Ther 275:703–709

    PubMed  CAS  Google Scholar 

  36. Tanaka H, Tajimi K, Kobayashi K (1999) Milrinone improves arterial oxygenation in dogs with acute lung injury induced by oleic acid. J Cardiovasc Pharmacol 34:806–810

    Article  PubMed  CAS  Google Scholar 

  37. Wang SM, Lei HY, Huang MC, Wu JM, Chen CT, Wang JN, Wang JR, Liu CC (2005) Therapeutic efficacy of milrinone in the management of enterovirus 71-induced pulmonary edema. Pediatr Pulmonol 39:219–223

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health grant HL039150 (CAH) and Shriners grants 8620 and 8895. Training grant T32HL007874.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Mrabat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrabat, H., Beagle, J., Hang, Z. et al. Inhibition of HA Synthase 3 mRNA Expression, with a Phosphodiesterase 3 Inhibitor, Blocks Lung Injury in a Septic Ventilated Rat Model. Lung 187, 233–239 (2009). https://doi.org/10.1007/s00408-009-9157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-009-9157-3

Keywords

Navigation