Skip to main content
Log in

The early proofs of the theorem of Campbell, Baker, Hausdorff, and Dynkin

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a comprehensive exposition of the early contributions to the so-called Campbell, Baker, Hausdorff, Dynkin Theorem during the years 1890–1950. Related works by Schur, Poincaré, Pascal, Campbell, Baker, Hausdorff, and Dynkin will be investigated and compared. For a full recovery of the original sources, many mathematical details will also be furnished. In particular, we rediscover and comment on a series of five notable papers by Pascal (Lomb Ist Rend, 1901–1902), which nowadays are almost forgotten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaspour H., Moskowitz M. (2007) Basic Lie theory. World Scientific, Hackensack, NJ

    MATH  Google Scholar 

  • Alexandrov, P.S., et al. 1979. Die Hilbertschen Probleme. Ostwalds Klassiker der exakten Wissenschaften. Leipzig: Akademische Verlagsgesellschaft Geest & Portig K.-G.

  • Baker H.F. (1901) On the exponential theorem for a simply transitive continuous group, and the calculation of the finite equations from the constants of structure. Proceedings of the London Mathematical Society 34: 91–127

    MATH  Google Scholar 

  • Baker H.F. (1902) Further applications of matrix notation to integration problems. Proceedings of the London Mathematical Society 34: 347–360

    Google Scholar 

  • Baker H.F. (1903) On the calculation of the finite equations of a continuous group. Proceedings of the London Mathematical Society 35: 332–333

    MATH  Google Scholar 

  • Baker H.F. (1905) Alternants and continuous groups. Proceedings of the London Mathematical Society (2) 3: 24–47

    MATH  Google Scholar 

  • Białynicki-Birula I., Mielnik B., Plebański J. (1969) Explicit solution of the continuous Baker–Campbell–Hausdorff problem and a new expression for the phase operator. Annals of Physics 51: 187–200

    Google Scholar 

  • Biermann K.-R. (1988) Die Mathematik und ihre Dozenten an der Berliner Universität 1810–1933. Stationen auf dem Wege eines mathematischen Zentrums von Weltgeltung, 2nd improved edn. Akademie-Verlag, Berlin

    Google Scholar 

  • Birkhoff G. (1936) Continuous groups and linear spaces. Recueil Mathématique [Matematicheskii Sbornik] N.S. 1(43) 5: 635–642

    MathSciNet  Google Scholar 

  • Birkhoff G. (1938) Analytic groups. Transactions of the American Mathematical Society 43: 61–101

    MathSciNet  Google Scholar 

  • Blanes S., Casas F. (2004) On the convergence and optimization of the Baker-Campbell-Hausdorff formula. Linear Algebra and its Applications 378: 135–158

    MathSciNet  MATH  Google Scholar 

  • Blanes S., Casas F., Oteo J.A., Ros J. (1998) Magnus and Fer expansions for matrix differential equations: The convergence problem. Journal of Physics A: Mathematical and General 31: 259–268

    MathSciNet  MATH  Google Scholar 

  • Blanes S., Casas F., Oteo J.A., Ros J. (2009) The Magnus expansion and some of its applications. Physics Reports 470: 151–238

    MathSciNet  Google Scholar 

  • Bonfiglioli, A., and R. Fulci. 2012. Topics in noncommutative algebra. The theorem of Campbell, Baker, Hausdorff and Dynkin. Lecture Notes in Mathematics 2034. Berlin: Springer-Verlag.

  • Borel, A. 2001. Essays in the history of Lie groups and algebraic groups. History of Mathematics 21. Providence/Cambridge: American Mathematical Society/London Mathematical Society.

  • Bose A. (1989) Dynkin’s method of computing the terms of the Baker–Campbell–Hausdorff series. Journal of Mathematical Physics 30: 2035–2037

    MathSciNet  MATH  Google Scholar 

  • Boseck, H., Czichowski, G., and K.-P. Rudolph. (1981) Analysis on topological groups—general Lie theory. Teubner-Texte zur Mathematik 37. Leipzig: BSB B. G. Teubner Verlagsgesellschaft.

  • Bourbaki, N. 1972. Éléments de Mathématique. Fasc. XXXVII: Groupes et algèbres de Lie. Chap. II: Algèbres de Lie libres. Chap. III: Groupes de Lie. Actualités scientifiques et industrielles, 1349. Paris: Hermann.

  • Campbell J.E. (1897a) On a law of combination of operators bearing on the theory of continuous transformation groups. Proceedings of the London Mathematical Society 28: 381–390

    MATH  Google Scholar 

  • Campbell J.E. (1897b) Note on the theory of continuous groups. Bulletin of the American Mathematical Society 4: 407–408

    Google Scholar 

  • Campbell J.E. (1898) On a law of combination of operators (second paper). Proceedings of the London Mathematical Society 29: 14–32

    MATH  Google Scholar 

  • Campbell J.E. (1903) Introductory treatise on Lie’s theory of finite continuous transformation groups. Clarendon Press, Oxford

    Google Scholar 

  • Cartier P. (1956) Demonstration algébrique de la formule de Hausdorff. Bulletin de la Société Mathématique de France 84: 241–249

    MathSciNet  MATH  Google Scholar 

  • Casas F. (2007) Sufficient conditions for the convergence of the Magnus expansion. Journal of Physics A: Mathematical and Theoretical 40: 15001–15017

    MathSciNet  MATH  Google Scholar 

  • Casas F., Murua A. (2009) An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications. Journal of Mathematical Physics 50: 033513–103351323

    MathSciNet  Google Scholar 

  • Cohen A. (1931) An introduction to the Lie theory of one-parameter groups. G.E. Stechert & Co., New York

    Google Scholar 

  • Czyż J. (1989) On Lie supergroups and superbundles defined via the Baker–Campbell–Hausdorff formula. Journal of Geometry and Physics 6: 595–626

    MathSciNet  MATH  Google Scholar 

  • Czyż J. (1994) Paradoxes of measures and dimensions originating in Felix Hausdorff’s ideas. World Scientific Publishing Co. Inc., Singapore

    MATH  Google Scholar 

  • Day J., So W., Thompson R.C. (1991) Some properties of the Campbell–Baker–Hausdorff series. Linear and Multilinear Algebra 29: 207–224

    MathSciNet  MATH  Google Scholar 

  • Dieudonné, J.A. 1974. Treatise on analysis, Vol. IV. Pure and Applied Mathematics 10-IV. New York: Academic Press.

  • Dieudonné, J.A. 1982. A panorama of pure mathematics. As seen by N. Bourbaki. Pure and Applied Mathematics 97. New York: Academic Press.

  • Djoković D.Ž. (1975) An elementary proof of the Baker–Campbell–Hausdorff–Dynkin formula. Mathematische Zeitschrift 143: 209–211

    MathSciNet  MATH  Google Scholar 

  • Dragt A.J., Finn J.M. (1976) Lie series and invariant functions for analytic symplectic maps. Journal of Mathematical Physics 17: 2215–2217

    MathSciNet  MATH  Google Scholar 

  • Duistermaat J.J., Kolk J.A.C. (2000) Lie groups. Springer, Universitext. Berlin

    MATH  Google Scholar 

  • Dynkin E.B. (1947) Calculation of the coefficients in the Campbell–Hausdorff formula (Russian). Doklady Akademii Nauk SSSR (N. S.) 57: 323–326

    MathSciNet  MATH  Google Scholar 

  • Dynkin E.B. (1949) On the representation by means of commutators of the series log (e x e y) for noncommutative x and y (Russian). Matematicheskii Sbornik (N.S.) 25(67(1)): 155–162

    MathSciNet  Google Scholar 

  • Dynkin E.B. (1950) Normed Lie algebras and analytic groups. Uspekhi Matematicheskikh Nauk 5:1(35): 135–186.

    Google Scholar 

  • Dynkin, E.B. 2000. Selected papers of E. B. Dynkin with commentary. Eds. A.A. Yushkevich, G.M. Seitz, and A.L. Onishchik. Providence: American Mathematical Society.

  • Eichler M. (1968) A new proof of the Baker–Campbell–Hausdorff formula. Journal of the Mathematical Society of Japan 20: 23–25

    MathSciNet  MATH  Google Scholar 

  • Eisenhart, L.P. 1933. Continuous groups of transformations. Princeton: University Press. (Reprinted 1961, New York: Dover Publications.)

  • Eriksen E. (1968) Properties of higher-order commutator products and the Baker–Hausdorff formula. Journal of Mathematical Physics 9: 790–796

    MathSciNet  MATH  Google Scholar 

  • Folland G.B. (1975) Subelliptic estimates and function spaces on nilpotent Lie groups. Arkiv for Matematik 13: 161–207

    MathSciNet  MATH  Google Scholar 

  • Folland, G.B., and E.M. Stein. 1982. Hardy spaces on homogeneous groups. Mathematical Notes 28. Princeton/Tokyo: Princeton University Press/University of Tokyo Press.

  • Friedrichs K.O. (1953) Mathematical aspects of the quantum theory of fields. V. Fields modified by linear homogeneous forces. Communications on Pure and Applied Mathematics 6: 1–72

    MathSciNet  MATH  Google Scholar 

  • Gilmore R. (1974) Baker–Campbell–Hausdorff formulas. Journal of Mathematical Physics 15: 2090–2092

    MathSciNet  MATH  Google Scholar 

  • Glöckner H. (2002a) Algebras whose groups of units are Lie groups. Studia Mathematica 153: 147–177

    MathSciNet  MATH  Google Scholar 

  • Glöckner, H. 2002b. Infinite-dimensional Lie groups without completeness restrictions. In Geometry and analysis on finite and infinite-dimensional Lie Groups, vol. 55, ed. A. Strasburger, W. Wojtynski, J. Hilgert, and K.-H. Neeb, 43–59. Warsaw: Banach Center Publications.

  • Glöckner H. (2002c) Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. Journal of Functional Analysis 194: 347–409

    MathSciNet  MATH  Google Scholar 

  • Glöckner H., Neeb K.-H. (2003) Banach–Lie quotients, enlargibility, and universal complexifications. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 560: 1–28

    MATH  Google Scholar 

  • Godement, R. 1982. Introduction à la théorie des groupes de Lie. Tome 2. Publications Mathématiques de l’Université Paris VII. Paris: Université de Paris VII, U.E.R. de Mathématiques.

  • Gorbatsevich, V.V., A.L. Onishchik, and E.B. Vinberg. 1997. Foundations of Lie theory and Lie transformation groups. New York: Springer.

  • Gordina M. (2005) Hilbert–Schmidt groups as infinite-dimensional Lie groups and their Riemannian geometry. Journal of Functional Analysis 227: 245–272

    MathSciNet  MATH  Google Scholar 

  • Hairer E., Lubich Ch., Wanner G. (2006) Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. Springer, New York

    MATH  Google Scholar 

  • Hall, B.C. 2003. Lie groups, Lie algebras, and representations: an elementary introduction. Graduate texts in mathematics. New York: Springer.

  • Hausdorff F. (1906) Die symbolische Exponentialformel in der Gruppentheorie. Berichte der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig (Leipziger Berichte), Math. Phys. Cl. 58: 19–48

    Google Scholar 

  • Hausdorff, F. 2001. Gesammelte Werke. Band IV: Analysis, Algebra und Zahlentheorie. Herausgegeben von S.D. Chatterji, R. Remmert und W. Scharlau. (Collected works. Vol. IV: Analysis, algebra, number theory.). Eds. S.D. Chatterji, R. Remmert, and W. Scharlau. Berlin: Springer.

  • Hausner, M., and J.T. Schwartz. 1968. Lie Groups. Lie algebras. Notes on mathematics and its applications. New York: Gordon and Breach.

  • Hawkins, Th. 1989. Line geometry, differential equations and the birth of Lie’s theory of groups. In The history of modern mathematics, vol. I, pp. 275–327. Boston: Academic Press.

  • Hawkins Th. (1991) Jacobi and the birth of Lie’s theory of groups. Archive for History of Exact Sciences 42: 187–278

    MathSciNet  MATH  Google Scholar 

  • Hawkins, Th. 2000. Emergence of the Theory of Lie groups. An essay in the history of mathematics 1869–1926. Sources and studies in the history of mathematics and physical sciences. New York: Springer.

  • Hilgert J., Hofmann K.H. (1986) On Sophus Lie’s fundamental theorem. Journal of Functional Analysis 67: 239–319

    MathSciNet  Google Scholar 

  • Hilgert J., Neeb K.-H. (1991) Lie-Gruppen und Lie-Algebren. Vieweg, Braunschweig

    MATH  Google Scholar 

  • Hochschild G.P. (1965) The structure of Lie groups. San Holden-Day Inc., Francisco

    MATH  Google Scholar 

  • Hofmann, K.H. 1972. Die Formel von Campbell, Hausdorff und Dynkin und die Definition Liescher Gruppen. In Theory of sets and topology, ed. W. Rinow, 251–264. Berlin: VEB Deutscher Verlag der Wissenschaften.

  • Hofmann, K.H. 1975. Théorie directe des groupes de Lie. I, II, III, IV. Séminaire Dubreil, Algèbre, tome 27, n. 1 (1973/1974), Exp. 1 (1–24), Exp. 2 (1–16), Exp. 3 (1–39), Exp. 4 (1–15).

  • Hofmann K.H., Morris S.A. (2005) Sophus Lie’s third fundamental theorem and the adjoint functor theorem. Journal of Group Theory 8: 115–133

    MathSciNet  MATH  Google Scholar 

  • Hofmann, K.H., and S.A. Morris. 2006. The structure of compact groups. A primer for the student—A handbook for the expert, 2nd revised edn., de Gruyter Studies in Mathematics 25. Berlin: Walter de Gruyter.

  • Hofmann, K.H., and S.A. Morris. 2007. The Lie theory of connected pro-Lie goups. A structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact groups. EMS tracts in mathematics 2. Zürich: European Mathematical Society.

  • Hofmann K.H., Neeb K.-H. (2009) Pro-Lie groups which are infinite-dimensional Lie groups. Mathematical Proceedings of the Cambridge Philosophical Society 146: 351–378

    MathSciNet  MATH  Google Scholar 

  • Hörmander L. (1967) Hypoelliptic second order differential equations. Acta Mathematica 119: 147–171

    MathSciNet  MATH  Google Scholar 

  • Ince, E.L. 1927. Ordinary differential equations. London: Longmans, Green & Co. (Reprinted 1956, New York: Dover Publications Inc.)

  • Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A. (2000) Lie-group methods. Acta Numerica 9: 215–365

    Google Scholar 

  • Iserles A., Nørsett S.P. (1999) On the solution of linear differential equations in Lie groups. Philosophical Transactions of the Royal Society A 357: 983–1019

    MATH  Google Scholar 

  • Jacobson, N. 1962. Lie algebras. Interscience tracts in pure and applied mathematics 10. New York: Interscience Publishers/Wiley.

  • Klarsfeld S., Oteo J.A. (1989a) Recursive generation of higher-order terms in the Magnus expansion. Physical Review A 39: 3270–3273

    Google Scholar 

  • Klarsfeld S., Oteo J.A. (1989b) The Baker–Campbell–Hausdorff formula and the convergence of Magnus expansion. Journal of Physics A: Mathematical and General 22: 4565–4572

    MathSciNet  MATH  Google Scholar 

  • Kobayashi H., Hatano N., Suzuki M. (1998) Goldberg’s theorem and the Baker–Campbell–Hausdorff formula. Physica A 250: 535–548

    MathSciNet  MATH  Google Scholar 

  • Kolsrud M. (1993) Maximal reductions in the Baker–Hausdorff formula. Journal of Mathematical Physics 34: 270–286

    MathSciNet  MATH  Google Scholar 

  • Kumar K. (1965) On expanding the exponential. Journal of Mathematical Physics 6: 1928–1934

    MathSciNet  MATH  Google Scholar 

  • Magnus W. (1950) A connection between the Baker-Hausdorff formula and a problem of Burnside. Annals of Mathematics 52: 111–126

    MathSciNet  MATH  Google Scholar 

  • Magnus W., Karrass A., Solitar D. (1966) Combinatorial group theory. Interscience, New York

    MATH  Google Scholar 

  • McLachlan R.I., Quispel R. (2002) Splitting methods. Acta Numerica 11: 341–434

    MathSciNet  MATH  Google Scholar 

  • Michel J. (1976) Calculs dans les algèbres de Lie libre: la série de Hausdorff et le problème de Burnside. Astérisque 38: 139–148

    Google Scholar 

  • Mielnik B., Plebański J. (1970) Combinatorial approach to Baker–Campbell–Hausdorff exponents. Annales de l’Institut Henri Poincaré 12: 215–254

    MATH  Google Scholar 

  • Moan, P.C. 1998. Efficient approximation of Sturm-Liouville problems using Lie-group methods. Technical Report 1998/NA11, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England.

  • Moan P.C., Niesen J. (2008) Convergence of the Magnus series. Foundations of Computational Mathematics 8: 291–301

    MathSciNet  MATH  Google Scholar 

  • Moan P.C., Oteo J.A. (2001) Convergence of the exponential Lie series. Journal of Mathematical Physics 42: 501–508

    MathSciNet  MATH  Google Scholar 

  • Montgomery D., Zippin L. (1955) Topological transformation groups. Interscience Publishers, New York

    MATH  Google Scholar 

  • Murray F.J. (1962) Perturbation theory and Lie algebras. Journal of Mathematical Physics 3: 451–468

    MathSciNet  MATH  Google Scholar 

  • Nagel A., Stein E.M., Wainger S. (1985) Balls and metrics defined by vector fields I, basic properties. Acta Mathematica 155: 103–147

    MathSciNet  MATH  Google Scholar 

  • Neeb K.-H. (2006) Towards a Lie theory of locally convex groups. Japanese Journal of Mathematics (3) 1: 291–468

    MathSciNet  MATH  Google Scholar 

  • Newman M., So W., Thompson R.C. (1989) Convergence domains for the Campbell–Baker–Hausdorff formula. Linear Multilinear Algebra 24: 301–310

    MathSciNet  MATH  Google Scholar 

  • Omori, H. 1997. Infinite-dimensional Lie groups. Translations of Mathematical Monographs 158. Providence: American Mathematical Society.

  • Oteo J.A. (1991) The Baker-Campbell-Hausdorff formula and nested commutator identities. Journal of Mathematical Physics 32: 419–424

    MathSciNet  MATH  Google Scholar 

  • Pascal E. (1901a) Sopra alcune indentità fra i simboli operativi rappresentanti trasformazioni infinitesime. Rendiconti/Istituto Lombardo di Scienze e Lettere, Milano (2) 34: 1062–1079

    Google Scholar 

  • Pascal E. (1901b) Sulla formola del prodotto di due trasformazioni finite e sulla dimostrazione del cosidetto secondo teorema fondamentale di Lie nella teoria dei gruppi. Rendiconti/Istituto Lombardo di Scienze e Lettere, Milano (2) 34: 1118–1130

    Google Scholar 

  • Pascal E. (1902a) Sopra i numeri bernoulliani. Rendiconti/Istituto Lombardo di Scienze e Lettere, Milano (2) 35: 377–389

    Google Scholar 

  • Pascal E. (1902b) Del terzo teorema di Lie sull’esistenza dei gruppi di data struttura. Rendiconti/Istituto Lombardo di Scienze e Lettere, Milano (2) 35: 419–431

    Google Scholar 

  • Pascal E. (1902c) Altre ricerche sulla formola del prodotto di due trasformazioni finite e sul gruppo parametrico di un dato. Rendiconti / Istituto Lombardo di Scienze e Lettere, Milano (2) 35: 555–567

    Google Scholar 

  • Pascal, E. 1903. I Gruppi Continui di Trasformazioni (Parte generale della teoria). Manuali Hoepli, Nr. 327 bis 328; Milano: Hoepli.

  • Poincaré H. (1899) Sur les groupes continus. Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 128: 1065–1069

    MATH  Google Scholar 

  • Poincaré H. (1900) Sur les groupes continus. Transactions of the Cambridge Philosophical Society 18: 220–255

    Google Scholar 

  • Poincaré H. (1901) Quelques remarques sur les groupes continus. Rendiconti del Circolo Matematico di Palermo 15: 321–368

    MATH  Google Scholar 

  • Reinsch M.W. (2000) A simple expression for the terms in the Baker–Campbell–Hausdorff series. Journal of Mathematical Physics 41: 2434–2442

    MathSciNet  MATH  Google Scholar 

  • Reutenauer, C. 1993. Free Lie algebras. London Mathematical Society Monographs (New Series) 7. Oxford: Clarendon Press.

  • Richtmyer R.D., Greenspan S. (1965) Expansion of the Campbell–Baker–Hausdorff formula by computer. Communications on Pure and Applied Mathematics 18: 107–108

    MathSciNet  MATH  Google Scholar 

  • Robart Th. (1997) Sur l’intégrabilité des sous-algèbres de Lie en dimension infinie. Canadian Journal of Mathematics 49: 820–839

    MathSciNet  MATH  Google Scholar 

  • Robart Th. (2004) On Milnor’s regularity and the path-functor for the class of infinite dimensional Lie algebras of CBH type. Algebras, Groups and Geometries 21: 367–386

    MathSciNet  MATH  Google Scholar 

  • Rossmann, W. 2002. Lie Groups. An Introduction Through Linear Groups. Oxford graduate texts in mathematics 5. Oxford: Oxford University Press.

  • Rothschild L.P., Stein E.M. (1976) Hypoelliptic differential operators and nilpotent groups. Acta Mathematica 137: 247–320

    MathSciNet  Google Scholar 

  • Sagle, A.A., R.E. Walde. 1973. Introduction to Lie groups and Lie algebras. Pure and applied mathematics 51. New York: Academic Press.

  • Schmid W. (1982) Poincaré and Lie groups. Bulletin of the American Mathematical Society (New Series) 6: 175–186

    MATH  Google Scholar 

  • Schmid, R. 2010. Infinite-dimensional Lie groups and algebras in Mathematical Physics. Advances in Mathematical Physics: Article ID 280362. doi:10.1155/2010/280362.

  • Schur F. (1890a) Neue Begründung der Theorie der endlichen Transformationsgruppen. Mathematische Annalen 35: 161–197

    MathSciNet  MATH  Google Scholar 

  • Schur F. (1890b) Beweis für die Darstellbarkeit der infinitesimalen Transformationen aller transitiven endlichen Gruppen durch Quotienten beständig convergenter Potenzreihen. Berichte der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig (Leipziger Berichte), Math. phys. Cl. 42: 1–7

    Google Scholar 

  • Schur F. (1891) Zur Theorie der endlichen Transformationsgruppen. Mathematische Annalen 38: 263–286

    MathSciNet  MATH  Google Scholar 

  • Schur F. (1893) Ueber den analytischen Charakter der eine endliche continuirliche Transformationsgruppe darstellenden Functionen. Mathematische Annalen 41: 509–538

    MathSciNet  MATH  Google Scholar 

  • Sepanski, M.R. 2007. Compact Lie groups. Graduate texts in mathematics 235. New York: Springer.

  • Serre, J.P. 1965. Lie algebras and Lie groups: 1964 lectures given at Harvard University, 1st edn. 1965, New York: W. A. Benjamin, Inc., 2nd ed. 1992. Lecture notes in mathematics 1500. Berlin: Springer.

  • Specht W. (1948) Die linearen Beziehungen zwischen höheren Kommutatoren. Mathematische Zeitschrift 51: 367–376

    MathSciNet  MATH  Google Scholar 

  • Suzuki M. (1977) On the convergence of exponential operators–the Zassenhaus formula, BCH formula and systematic approximants. Communications in Mathematical Physics 57: 193–200

    MathSciNet  MATH  Google Scholar 

  • Thompson R.C. (1982) Cyclic relations and the Goldberg coefficients in the Campbell–Baker–Hausdorff formula. Proceedings of the American Mathematical Society 86: 12–14

    MathSciNet  MATH  Google Scholar 

  • Thompson R.C. (1989) Convergence proof for Goldberg’s exponential series. Linear Algebra and its Applications 121: 3–7

    MathSciNet  MATH  Google Scholar 

  • Ton-That T., Tran T.D. (1999) Poincaré’s proof of the so-called Birkhoff–Witt theorem. Revue d’Histoire des Mathématiques 5: 249–284

    MathSciNet  MATH  Google Scholar 

  • Tu L.W. (2004) Une courte démonstration de la formule de Campbell–Hausdorff. Journal of Lie Theory 14: 501–508

    MathSciNet  MATH  Google Scholar 

  • Van Est W.T., Korthagen J. (1964) Non-enlargible Lie algebras. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series A 67 =  Indagationes Mathematicae 26: 15–31

    MathSciNet  Google Scholar 

  • Varadarajan, V.S. 1984. Lie groups, Lie algebras, and their representations. (Reprint of the 1974 edition.) Graduate texts in mathematics 102. New York: Springer.

  • Vasilescu F.-H. (1972) Normed Lie algebras. Canadian Journal of Mathematics 24: 580–591

    MathSciNet  MATH  Google Scholar 

  • Veldkamp F.D. (1980) A note on the Campbell–Hausdorff formula. Journal of Algebra 62: 477–478

    MathSciNet  MATH  Google Scholar 

  • Wei J. (1963) Note on the global validity of the Baker–Hausdorff and Magnus theorems. Journal of Mathematical Physics 4: 1337–1341

    MathSciNet  MATH  Google Scholar 

  • Weiss G.H., Maradudin T.D. (1962) The Baker Hausdorff formula and a problem in Crystal Physics. Journal of Mathematical Physics 3: 771–777

    MathSciNet  MATH  Google Scholar 

  • Wever F. (1949) Operatoren in Lieschen Ringen. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 187: 44–55

    MathSciNet  MATH  Google Scholar 

  • Wichmann E.H. (1961) Note on the algebraic aspect of the integration of a system of ordinary linear differential equations. Journal of Mathematical Physics 2: 876–880

    MathSciNet  MATH  Google Scholar 

  • Wilcox R.M. (1967) Exponential operators and parameter differentiation in quantum physics. Journal of Mathematical Physics 8: 962–982

    MathSciNet  MATH  Google Scholar 

  • Wojtyński W. (1998) Quasinilpotent Banach-Lie algebras are Baker–Campbell–Hausdorff. Journal of Functional Analysis 153: 405–413

    MathSciNet  MATH  Google Scholar 

  • Yosida K. (1937) On the exponential-formula in the metrical complete ring. Proceedings of the Imperial Academy Tokyo 13: 301–304. doi:10.3792/pia/1195579861

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Achilles.

Additional information

Communicated by: Umberto Bottazzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achilles, R., Bonfiglioli, A. The early proofs of the theorem of Campbell, Baker, Hausdorff, and Dynkin. Arch. Hist. Exact Sci. 66, 295–358 (2012). https://doi.org/10.1007/s00407-012-0095-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-012-0095-8

Keywords

Navigation