Skip to main content
Log in

An anthropic myth: Fred Hoyle’s carbon-12 resonance level

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

The case of Fred Hoyle’s prediction of a resonance state in carbon-12, unknown in 1953 when it was predicted, is often mentioned as an example of anthropic prediction. However, an investigation of the historical circumstances of the prediction and its subsequent experimental confirmation shows that Hoyle and his contemporaries did not associate the level in the carbon nucleus with life. Only in the 1980s, after the emergence of the anthropic principle, did it become common to see Hoyle’s prediction as anthropically significant. At about the same time mythical accounts of the prediction and its history began to abound. Not only has the anthropic myth no basis in historical fact, it is also doubtful if the excited levels in carbon-12 and other atomic nuclei can be used as an argument for the predictive power of the anthropic principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajzenberg Fay, Thomas Lauritsen (1952) Energy levels of light nuclei. IV. Reviews of Modern Physics 24: 321–402

    Article  Google Scholar 

  • Ajzenberg Fay, Thomas Lauritsen. (1955) Energy levels of light nuclei. V. Reviews of Modern Physics 27: 77–166

    Article  Google Scholar 

  • Alpher Ralph, Robert Herman. (1950) Theory of the origin and relative abundance distribution of the elements. Reviews of Modern Physics 22: 153–212

    Article  MATH  Google Scholar 

  • Arnett, David. 2005. Sir Fred Hoyle and the theory of the synthesis of the elements. In The scientific legacy of Fred Hoyle, ed. Douglas Gough, 9–24. Cambridge: Cambridge University Press.

  • Balashov Yuri. (1991) Resource letter AP-1: The anthropic principle. American Journal of Physics 59: 1069–1076

    Article  MathSciNet  Google Scholar 

  • Barrow John D. (1981) The lore of large numbers: Some historical background to the anthropic principle. Quarterly Journal of the Royal Astronomical Society 22: 388–420

    Google Scholar 

  • Barrow John D. (2002) The constants of nature: From alpha to omega. Jonathan Cape, London

    Google Scholar 

  • Barrow John D., Tipler Frank J. (1986) The anthropic cosmological principle. Cambridge University Press, Cambridge

    Google Scholar 

  • Bartusiak Marcia. (1993) Through a universe darkly: A cosmic tale of Ancient Ethers, dark matter, and the fate of the universe. HarperCollins, New York

    Google Scholar 

  • Bethe Hans. (1939) Energy production in stars. Physical Review 55: 434–456

    Article  MATH  Google Scholar 

  • Bethe Hans, Critchfield Charles L. (1938) The formation of deuterons by proton combination. Physical Review 54: 248–254

    Article  Google Scholar 

  • Bondi, Hermann. 1966. Some philosophical problems in cosmology. In British philosophy in the mid- century, ed. C.A. Mace, 393–400. London: Allen and Unwin.

  • Bondi Hermann, Salpeter Edwin E. (1952) Thermonuclear reactions and astrophysics. Nature 169: 304–305

    Article  Google Scholar 

  • Britten Roy. (1952) The scattering of 31.5-MeV protons from several elements. Physical Review 88: 283–294

    Article  Google Scholar 

  • Burbidge Geoffrey R. (2003) Sir Fred Hoyle. Biographical Memoirs of Fellows of the Royal Society 49: 213–247

    Article  Google Scholar 

  • Burbidge, Geoffrey R. 2008. Hoyle’s role in B2 FH. Science 319: 1484.

    Google Scholar 

  • Burbidge E. Margaret, Burbidge Geoffrey R., Fowler William A., Fred Hoyle. (1957) Synthesis of the elements in the stars. Reviews of Modern Physics 29: 547–650

    Article  Google Scholar 

  • Carr Bernard J. (1982) On the origin, evolution and purpose of the physical universe. Irish Astronomical Journal 15: 237–253

    Google Scholar 

  • Carr Bernard J., Martin Rees. (1979) The anthropic principle and the structure of the physical world. Nature 278: 605–612

    Article  Google Scholar 

  • Carter, Brandon. 1974. Large number coincidences and the anthropic principle in cosmology. In Confrontation of cosmological theories with observational data, ed. Malcolm S. Longair, 291–298. Dordrecht: Reidel.

  • Carter Brandon. (1983) The anthropic principle and its implications for biological evolution. Philosophical Transactions of the Royal Society A 310: 347–365

    Article  Google Scholar 

  • Carter, Brandon. 2006. Anthropic principle in cosmology. In Current issues in cosmology, ed. Jean C. Pecker and Jayant V. Narlikar, 173–180. Cambridge: Cambridge University Press.

  • Cenadelli Davide. (2010) Solving the giant star problem: Theories of stellar evolution from the 1930s to the 1950s. Archive for History of Exact Sciences 64: 203–267

    Article  Google Scholar 

  • Chown Marcus. (1999) The Magic Furnace. Jonathan Cape, London

    Google Scholar 

  • Chown, Marcus. 2003. Open minds reap rewards. The Guardian, 13 March.

  • Clayton, Donald C. (1968). Principles of stellar evolution and nucleosynthesis. New York: McGraw-Hill Book Company

  • Clayton Donald C. (2001) Fred Hoyle, 1915–2001. Bulletin of the American Astronomical Society 33: 1570–1572

    Google Scholar 

  • Clayton, Donald C. 2007a. Hoyle, Fred. In Biographical encyclopedia of astronomers, ed. Thomas Hockey, 532–534. New York: Springer.

  • Clayton Donald C. (2007) Hoyle’s equation. Science 318: 1876–1877

    Article  Google Scholar 

  • Cook Charles W., Fowler William A., Lauritsen Charles C., Thomas Lauritsen. (1957) B12, C12, and the red giants. Physical Review 107: 508–515

    Article  Google Scholar 

  • Davies Paul C.W. (1978) Cosmic heresy?. Nature 273: 336–337

    Article  Google Scholar 

  • Dicke Robert H. (1961) Dirac’s cosmology and Mach’s principle. Nature 192: 440–441

    Article  MATH  Google Scholar 

  • Dunbar, D. Noel F., Ralph E. Pixley, William A. Wenzel, and Ward Whaling, 1953. The 7.68-MeV state in C12. Physical Review 92: 649–650.

  • Fermi, Enrico. 1949. Teorie sulle origine degli elemente. In Collected Papers, vol. 2, 707–720. Rome: University of Chicago Press.

  • Fowler William A. (1954) Experimental and theoretical results on nuclear reactions in stars. Mémoires de la Société Royale des Sciences de Liège 14: 88–112

    Google Scholar 

  • Fowler William A. (1984) The quest for the origin of the elements. Science 226: 922–935

    Article  Google Scholar 

  • Fowler William A., Greenstein Jesse L. (1956) Element-building reactions in stars. Proceedings of the National Academy of Sciences 42: 173–180

    Article  Google Scholar 

  • Fynbo Hans O.U. et al (2005) Revised rates for the stellar triple-α process from measurements of 12C nuclear resonances. Nature 433: 136–139

    Article  Google Scholar 

  • Gingerich, Owen. 1994. The summer of 1953: A watershed for astrophysics. Physics Today 41(December): 34–40.

  • Gingerich Owen. (2006) God’s universe. Belknap Press, Cambridge

    Google Scholar 

  • Gold Thomas. (1954) Relation between modern cosmologies and nuclear astrophysical processes. Mémoires de la Société Royale des Sciences de Liège 14: 68–69

    Google Scholar 

  • Greenberg John L. (2005) A conversation with William A. Fowler—Part II. Physics in Perspective 7: 165–203

    Article  Google Scholar 

  • Greenberg, John L., and Judith R. Goodstein. 1983. The origins of nuclear astrophysics at Caltech. http://resolver.caltech.edu/CaltechAUTHORS:20091021-103101222.

  • Greenstein Jesse L. (1954) Nuclear reactions affecting the abundance of the elements: General survey. Mémoires de la Société Royale des Sciences de Liège 14: 307–336

    Google Scholar 

  • Gregory Jane. (2005) Fred Hoyle’s universe. Oxford University Press, Oxford

    Google Scholar 

  • Gribbin John, Martin Rees. (1989) Cosmic coincidences: Dark matter, mankind, and anthropic cosmology. Bantam Books, New York

    Google Scholar 

  • Hayakawa Satio, Chushiro Hayashi Mitsuo Imoto, Ken Kikuchi. (1956) Helium capturing reactions in stars. Progress of Theoretical Physics 16: 507–527

    Article  Google Scholar 

  • Hemmendinger Arthur. (1949) Erratum: Disintegration of Be8. Physical Review 75: 1267

    Article  Google Scholar 

  • Holbrow Charles H. (1987) The giant cancer tube and the Kellogg Radiation Laboratory. Physics Today 34(July): 42–49

    Google Scholar 

  • Holloway M.G., Moore B.L. (1940) The disintegration of N14 and N15 by deuterons. Physical Review 58: 847–860

    Article  Google Scholar 

  • Hornyak, W.F., Thomas Lauritsen, Philip Morrison, and William A. Fowler. 1950. Energy levels of light nuclei. III. Reviews of Modern Physics 22: 291–372.

  • (1946) The synthesis of the elements from hydrogen. Monthly Notices of the Royal Astronomical Society 106: 343–383

    Google Scholar 

  • Hoyle Fred (1954) On nuclear reactions occurring in very hot stars. I: The synthesis of elements from carbon to nickel. Astrophysical Journal, Supplement Series 1: 121–146

    Article  Google Scholar 

  • Hoyle, Fred. 1957. [No title]. In Religion and the scientists, ed. N.F. Mott et al., 55–66. London: SCM Press.

  • Hoyle, Fred. 1958. Origins of the elements in the stars. In La Structure et l’Évolution de l’Univers, ed. R. Stoops, 281–296. Brussels: Institut Internationale de Physique Solvay.

  • Hoyle Fred (1965) Galaxies, nuclei, and quasars. Harper & Row, New York

    Google Scholar 

  • Hoyle Fred (1975) Astronomy and cosmology: A modern course. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Hoyle Fred (1980) Steady-state cosmology re-visited. University College Cardiff Press, Cardiff

    Google Scholar 

  • Hoyle, Fred. 1982a. Two decades of collaboration with Willy Fowler. In Essays in nuclear astrophysics, ed. C.A. Barnes, D.D. Clayton, and D.N. Schramm, 1–11. Cambridge: Cambridge University Press.

  • Hoyle Fred (1982) The universe: Past and present reflections. Annual Review of Astronomy and Astrophysics 20: 1–35

    Article  Google Scholar 

  • Hoyle Fred (1986) Personal comments on the history of nuclear astrophysics. Quarterly Journal of the Royal Astronomical Society 27: 445–453

    Google Scholar 

  • Hoyle Fred (1991) Some remarks on cosmology and biology. Memorie della Societa Astronomica Italiana 62: 513–518

    Google Scholar 

  • Hoyle, Fred. 1993. The anthropic and perfect cosmological principles: Similarities and differences. In The anthropic principle, ed. Francesco Bertola and Umberto Curi, 85–89. Cambridge: Cambridge University Press.

  • Hoyle Fred (1994) Home is where the wind blows: Chapters from a cosmologist’s life. University Science Books, Mill Valley

    Google Scholar 

  • Hoyle Fred, Burbidge Geoffrey R., Narlikar Jayant V. (1993) A quasi-steady state cosmological model with creation of matter. Astrophysical Journal 410: 437–457

    Article  Google Scholar 

  • Hoyle Fred, Dunbar D. Noel F., Wenzel William A., Ward Whaling. (1953) A state in C12 predicted from astrophysical evidence. Physical Review 92: 1095

    Google Scholar 

  • Hoyle Fred, Martin Schwarzschild. (1955) On the evolution of type II stars. Astrophysical Journal, Supplement 2: 1–40

    Article  Google Scholar 

  • Hoyle, Fred, and N. Chandra Wickramasinghe. 1997. Life on Mars? A case for a cosmic heritage. Bristol: Clinical Press, 1997.

  • Hoyle Fred, Wickramasinghe N. Chandra. (1999) The universe and life: Deductions from the weak anthropic principle. Astrophysics and Space Science 268: 89–102

    Article  Google Scholar 

  • Hufbauer Karl. (2006) Stellar structure and evolution. Journal for the History of Astronomy 37: 203–227

    Google Scholar 

  • Kirchner F., Laaf O., Neuert H. (1937) Über das Berylliumatom mit der Masse 8. Die Naturwissenschaften 25: 794

    Article  Google Scholar 

  • Klee Robert. (2002) The revenge of Pythagoras: How a mathematical sharp practice undermines the contemporary design argument in astrophysical cosmology. British Journal for the Philosophy of Science 53: 331–354

    Article  MATH  MathSciNet  Google Scholar 

  • Kragh Helge. (1996) Cosmology and controversy. The historical development of two theories of the universe. Princeton University Press, Princeton

    Google Scholar 

  • Kragh, Helge. 2010. The road to the anthropic principle. RePoss: Research Publications on Science Studies 7. http://www.ivs.au.dk/reposs.

  • Lang, Kenneth R., Owen, Gingerich (eds) (1979) A source book in astronomy and astrophysics, 1900–1975. Harvard University Press, Cambridge

    Google Scholar 

  • Leslie, John (eds) (1990) Physical cosmology and philosophy. Macmillan, New York

    Google Scholar 

  • Leslie John. (1994) Anthropic prediction. Philosophia 23: 117–144

    Article  Google Scholar 

  • Linde, Andrei. 2007. The inflationary universe. In Universe or multiverse? ed. Bernard Carr, 127–150. Cambridge: Cambridge University Press.

  • Livio Mario, Dave Hollowell Achim Weiss, Truran James W. (1989) The anthropic significance of the existence of an excited state of 12C. Nature 340: 281–284

    Article  Google Scholar 

  • Malm R., Buechner W.W. (1951) Alpha-particle groups from the N14(d, α)C12 and N15(d, α)C13 reactions. Physical Review 81: 519–522

    Article  Google Scholar 

  • Mitton Simon. (2005) Fred Hoyle: A life in science. Aurum Press, London

    Google Scholar 

  • Mosterin, Jesús. 2004. Anthropic explanations in cosmology. Proceedings of the 12th international congress of logic, methodology and philosophy of science, ed. Petr Hájek, Luis Valdés-Villanueva, and Dag Westerståhl, 441–471. Amsterdam: North-Holland.

  • Nakagawa Kimiko, Takashi Ohmura Hisao Takebe, Shinya Obi. (1956) Nuclear reactions in the later stage of the stellar evolution. Progress of Theoretical Physics 16: 389–415

    Article  Google Scholar 

  • Narlikar Jayant V. (1999) Wonders of the cosmos. Cambridge University Press, Cambridge

    Google Scholar 

  • Oberhummer, Heinz, Attila Csótó, and Helmut Schlattl. 2000. Fine-tuning carbon-based life in the universe by the triple-alpha process in red giants. In The future of the universe and the future of our civilization, ed. V. Burdyuzha and G. Khozin, 197–206. Singapore: World Scientific.

  • Oberhummer, Heinz, Rudolf Pichler, and Attila Csótó. 1998. The triple-alpha process and its anthropic significance. In Nuclei in the cosmos, V, ed. Nikos Prantzos and Sotiris Harrissopulos, 119–123. Paris: Editions Frontières.

  • Öpik Ernst. (1951) Stellar models with variable composition. II: Sequences of models with energy generation proportional to the fifteenth power of temperature. Proceedings of the Royal Irish Academy A 54: 49–77

    MATH  Google Scholar 

  • Reeves, Hubert. 1993. The growth of complexity in an expanding universe. In The anthropic principle, ed. Francesco Bertola and Umberto Curi, 67–84. Cambridge: Cambridge University Press.

  • Rozental Iosif L. (1980) Physical laws and the numerical values of fundamental constants. Soviet Physics Uspekhi 23: 296–306

    Article  Google Scholar 

  • Salpeter Edwin E. (1952) Nuclear reactions in stars without hydrogen. Astrophysical Journal 115: 326–328

    Article  Google Scholar 

  • Salpeter Edwin E. (1955) The 7.68-MeV level in C12 and stellar energy production. Physical Review 98: 1183–1184

    Google Scholar 

  • Salpeter Edwin E. (1955) Energy production in stars. Vistas in Astronomy 1: 283–290

    Article  Google Scholar 

  • Salpeter Edwin E. (1957) Nuclear reactions in stars. Buildup from helium. Physical Review 107: 516–525

    Article  Google Scholar 

  • Salpeter Edwin E. (2002) A generalist looks back. Annual Review of Astronomy and Astrophysics 40: 1–25

    Article  Google Scholar 

  • Salpeter Edwin E. (2008) Nuclear astrophysics before 1957. Publications of the Astronomical Society of Australia 25: 1–6

    Article  Google Scholar 

  • Sandage, Allan R., and Martin Schwarzschild. 1952. Inhomogeneous stellar models. II. Models with exhausted cores in gravitational contraction. Astrophysical Journal 116: 463–476.

    Google Scholar 

  • Scerri Eric R. (2007) The periodic table: Its story and significance. Oxford University Press, Oxford

    Google Scholar 

  • Schlattl Helmut et al (2004) Sensitivity of the C and O production on the 3α rate. Astrophysics and Space Science 291: 27–33

    Article  Google Scholar 

  • Schwarzschild Martin. (1958) Structure and evolution of the stars. Princeton University Press, Princeton

    Google Scholar 

  • Singh Simon. (2004) Big bang. Fourth Estate, London

    Google Scholar 

  • Smolin, Lee. 2007. Scientific alternatives to the anthropic principle. In Universe or multiverse? ed. Bernard Carr, 323–366. Cambridge: Cambridge University Press.

  • Spear Ray. (2002) The most important experiment ever performed by an Australian physicist. The Physicist 39: 35–41

    Google Scholar 

  • Staub Hans, Stephens William E. (1939) Anomalous scattering of neutrons by helium. Physical Review 55: 131–139

    Article  MATH  Google Scholar 

  • Susskind Leonard. (2006) The cosmic landscape: String theory and the illusion of intelligent design. Little, Brown and Company, New York

    Google Scholar 

  • Tassoul Jean-Louis, Monique Tassoul. (2004) A concise history of solar and stellar physics. Princeton University Press, Princeton

    Google Scholar 

  • Tollestrup Alvin V., Fowler William A., Lauritzen Charles C. (1949) Energy release in beryllium and lithium reactions with protons. Physical Review 76: 428–430

    Article  Google Scholar 

  • Walker, Mark, and Milan Ćirković. 2003. Anthropic reasoning and the contemporary design argument in astrophysics: A reply to Robert Klee. http://philsci-archive.pitt.edu/archive/00001443/.

  • Weinberg Steven. (2001) Facing up: Science and its cultural adversaries. Harvard University Press, Cambridge

    MATH  Google Scholar 

  • Weinberg, Steven. 2007. Living in the multiverse. In Universe or multiverse? ed. Bernard Carr, 29–42. Cambridge: Cambridge University Press.

  • Wheeler John A. (1940) The alpha-particle model and the properties of the nucleus Be8. Physical Review 59: 27–36

    Article  Google Scholar 

  • Wickramasinghe N. Chandra. (2005) A journey with Fred Hoyle: The search for cosmic life. World Scientific, Singapore

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Kragh.

Additional information

Communicated by Roger Stuewer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kragh, H. An anthropic myth: Fred Hoyle’s carbon-12 resonance level. Arch. Hist. Exact Sci. 64, 721–751 (2010). https://doi.org/10.1007/s00407-010-0068-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-010-0068-8

Keywords

Navigation