Skip to main content
Log in

Brain–heart interaction disruption in major depressive disorder: disturbed rhythm modulation of the cardiac cycle on brain transient theta bursts

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Brain neurons support arousal and cognitive activity in the form of spectral transient bursts and cooperate with the peripheral nervous system to adapt to the surrounding environment. However, the temporal dynamics of brain–heart interactions have not been confirmed, and the mechanism of brain–heart interactions in major depressive disorder (MDD) remains unclear. This study aimed to provide direct evidence for brain–heart synchronization in temporal dynamics and clarify the mechanism of brain–heart interaction disruption in MDD. Eight-minute resting-state (closed eyes) electroencephalograph and electrocardiogram signals were acquired simultaneously. The Jaccard index (JI) was used to measure the temporal synchronization between cortical theta transient bursts and cardiac cycle activity (diastole and systole) in 90 MDD patients and 44 healthy controls (HCs) at rest. The deviation JI was used to reflect the equilibrium of brain activity between diastole and systole. The results showed that the diastole JI was higher than the systole JI in both the HC and MDD groups; compared to HCs, the deviation JI attenuated at F4, F6, FC2, and FC4 in the MDD patients. The eccentric deviation JI was negatively correlated with the despair factor scores of the HAMD, and after 4 weeks of antidepressant treatment, the eccentric deviation JI was positively correlated with the despair factor scores of the HAMD. It was concluded that brain–heart synchronization existed in the theta band in healthy individuals and that disturbed rhythm modulation of the cardiac cycle on brain transient theta bursts at right frontoparietal sites led to brain–heart interaction disruption in MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets generated for this study are available on request to the corresponding author. The code of Time-Delay Embedded Hidden Markov Model (TDE-HMM) is publicly availableathttps://github.com/OHBA-analysis/HMM-MAR) which is demonstrated to be capable of concurrently detecting various types of state with distinct power spectra (Seedat ZA, Quinn AJ, Vidaurre D, et al. 2020) [46].

References

  1. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nat Rev Dis Primers 2:16065. https://doi.org/10.1038/nrdp.2016.65

    Article  PubMed  Google Scholar 

  2. Hare DL, Toukhsati SR, Johansson P, Jaarsma T (2014) Depression and cardiovascular disease: a clinical review. Eur Heart J 35:1365–1372. https://doi.org/10.1093/eurheartj/eht462

    Article  PubMed  Google Scholar 

  3. Rajan S, McKee M, Rangarajan S, Bangdiwala S, Rosengren A, Gupta R, Kutty VR, Wielgosz A, Lear S, AlHabib KF, Co HU, Lopez-Jaramillo P, Avezum A, Seron P, Oguz A, Kruger IM, Diaz R, Nafiza MN, Chifamba J, Yeates K, Kelishadi R, Sharief WM, Szuba A, Khatib R, Rahman O, Iqbal R, Bo H, Yibing Z, Wei L, Yusuf S, Prospective Urban Rural Epidemiology (PURE) Study Investigators (2020) Association of symptoms of depression with cardiovascular disease and mortality in low-, middle-, and high-income countries. JAMA Psychiatry 77:1052–1063. https://doi.org/10.1001/jamapsychiatry.2020.1351

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huimahn AC (2017) Listening with your heart. Sci Transl Med 9(414):1224. https://doi.org/10.1126/scitranslmed.aaq1224

    Article  Google Scholar 

  5. John PC (2021) The head and the heart of fear. Sience 374(6570):937–938. https://doi.org/10.1126/science.abm6790

    Article  CAS  Google Scholar 

  6. Andrea Z, Mauro GP, Eleonora P, Costantini M, Ferri F (2022) Brain–heart interactions are modulated across the respiratory cycle via interoceptive attention. NeuroImage 262:119548. https://doi.org/10.1016/j.neuroimage.2022.119548

    Article  Google Scholar 

  7. Northoff G (2016) Spatiotemporal psychopathology I: no rest for the brain’s resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. J Affect Disord 190:854–866. https://doi.org/10.1016/j.jad.2015.05.007

    Article  PubMed  Google Scholar 

  8. Skora LI, Livermore JJA, Roelofs K (2022) The functional role of cardiac activity in perception and action. Neurosci Biobehav Rev 137:104655. https://doi.org/10.1016/j.neubiorev.2022.104655

    Article  CAS  PubMed  Google Scholar 

  9. Mann DL, Zipes DP, Libby P, Bonow RO (2015) Braunwald’s heart disease: a textbook of cardiovascular medicine. Elsevier, Amsterdam

    Google Scholar 

  10. Young A, Hunt T, Ericson M (2021) The slowest shared resonance: a review of electromagnetic field oscillations between central and peripheral nervous systems. Front Hum Neurosci 15:796455. https://doi.org/10.3389/fnhum.2021.796455

    Article  PubMed  Google Scholar 

  11. Schmidt-Hieber C, Nolan MF (2017) Synaptic integrative mechanisms for spatial cognition. Nat Neurosci 20(11):1483–1492. https://doi.org/10.1038/nn.4652

    Article  CAS  PubMed  Google Scholar 

  12. Park HD, Bernasconi F, Bello-Ruiz J, Pfeiffer C, Salomon R, Blanke O (2016) Transient modulations of neural responses to heartbeats covary with bodily self-consciousness. J Neurosci 36(32):8453–8460. https://doi.org/10.1523/JNEUROSCI.0311-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park HD, Bernasconi F, Salomon R, Tallon-Baudry C, Spinelli L, Seeck M, Schaller K, Blanke O (2018) Neural Sources and underlying mechanisms of neural responses to heartbeats, and their role in bodily self-consciousness: an intracranial EEG study. Cereb Cortex 28(7):2351–2364. https://doi.org/10.1093/cercor/bhx136

    Article  PubMed  Google Scholar 

  14. Kato Y, Takei Y, Umeda S, Mimura M, Fukuda M (2020) Alterations of heartbeat evoked magnetic fields induced by sounds of disgust. Front Psychiatry 11:683. https://doi.org/10.3389/fpsyt.2020.00683

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hsueh B, Chen R, Jo Y, Tang D, Raffiee M, Kim YS, Inoue M, Randles S, Ramakrishnan C, Patel S, Kim DK, Liu TX, Kim SH, Tan L, Mortazavi L, Cordero A, Shi J, Zhao M, Ho TT, Crow A, Yoo AW, Raja C, Evans K, Bernstein D, Zeineh M, Goubran M, Deisseroth K (2023) Cardiogenic control of affective behavioural state. Nature 615(7951):292–299. https://doi.org/10.1038/s41586-023-05748-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Machetanz K, Berelidze L, Guggenberger R, Alireza G (2021) Brain–heart interaction during transcutaneous auricular vagus nerve stimulation. Front Neurosci 15:632697. https://doi.org/10.3389/fnins.2021.632697

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shokri-Kojori E, Tomasi D, Volkow ND (2018) An autonomic network: synchrony between slow rhythms of pulse and brain resting state is associated with personality and emotions. Cereb Cortex 28:3356–3371. https://doi.org/10.1093/cercor/bhy144

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vorkapić M, Savić A, Janković M, Useinović N, Isaković M, Puškaš N, Stanojlović O, Hrnčić D (2020) Alterations of medial prefrontal cortex bioelectrical activity in experimental model of isoprenaline-induced myocardial infarction. PLoS ONE 15:e0232530. https://doi.org/10.1371/journal.pone.0232530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim J, Jeong B (2019) heartbeat induces a cortical theta-synchronized network in the resting state. eNeuro 6:ENEURO.0200-19.2019. https://doi.org/10.1523/ENEURO.0200-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jones SR (2016) When brain rhythms aren’t ‘rhythmic’: implication for their mechanisms and meaning. Curr Opin Neurobiol 40:72–80. https://doi.org/10.1016/j.conb.2016.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sherman MA, Lee S, Law R, Thorn CA, Hämäläinen MS, Moore CI, Jones SR (2016) Neural mechanisms of transient neocortical beta rhythms: converging evidence from humans, computational modeling, monkeys, and mice. Proc Natl Acad Sci USA 113:E4885-4894. https://doi.org/10.1073/pnas.1604135113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Ede F, Quinn AJ, Woolrich MW, Nobre AC (2018) Neural oscillations: sustained rhythms or transient burst-events? Trends Neurosci 41:415–417. https://doi.org/10.1016/j.tins.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Nour MM, Schuck NW, Behrens TEJ, Dolan RJ (2022) Decoding cognition from spontaneous neural activity. Nat Rev Neurosci 23(4):204–214. https://doi.org/10.1038/s41583-022-00570-z

    Article  CAS  PubMed  Google Scholar 

  24. Zich C, Quinn AJ, Mardell LC, Ward NS, Bestmann S (2020) Dissecting transient burst events. Trends Cogn Sci 24:784–788. https://doi.org/10.1016/j.tics.2020.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD (2019) Spontaneous behaviors drive multidimensional, brain wide activity. Science 364:255. https://doi.org/10.1126/science.aav7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tal I, Neymotin S, Bickel S, Lakatos P, Schroeder CE (2020) Oscillatory bursting as a mechanism for temporal coupling and information coding. Front Comput Neurosci 14:82. https://doi.org/10.3389/fncom.2020.00082

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kircanski K, Williams LM, Gotlib IH (2019) Heart rate variability as a biomarker of anxious depression response to antidepressant medication. Depress Anxiety 36:63–71. https://doi.org/10.1002/da.22843

    Article  CAS  PubMed  Google Scholar 

  28. Patron E, Messerotti Benvenuti S, Favretto G, Gasparotto R, Palomba D (2015) Depression is associated with increased vagal withdrawal during unpleasant emotional imagery after cardiac surgery. Auton Neurosci 189:75–82. https://doi.org/10.1016/j.autneu.2015.02.002

    Article  PubMed  Google Scholar 

  29. Tonhajzerova I, Visnovcova Z, Mestanikova A, Jurko A, Mestanik M (2016) Cardiac vagal control and depressive symptoms in response to negative emotional stress. Adv Exp Med Biol 934:23–30. https://doi.org/10.1007/5584_2016_17

    Article  CAS  PubMed  Google Scholar 

  30. Zhou H, Zou H, Dai Z, Zhao S, Hua L, Xia Y, Han Y, Yan R, Tang H, Huang Y, Du Y, Wang X, Yao Z, Lu Q (2022) Interoception dysfunction contributes to the negative emotional bias in major depressive disorder. Front Psychiatry 13:874859. https://doi.org/10.3389/fpsyt.2022.874859

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bair A, Marksteiner J, Falch R, Ettinger U, Reyes Del Paso GA, Duschek S (2021) Features of autonomic cardiovascular control during cognition in major depressive disorder. Psychophysiology 58:e13628. https://doi.org/10.1111/psyp.13628

    Article  PubMed  Google Scholar 

  32. Hoffmann A, Ettinger U, Reyes Del Paso GA, Duschek S (2017) Executive function and cardiac autonomic regulation in depressive disorders. Brain Cogn 118:108–117. https://doi.org/10.1016/j.bandc.2017.08.003

    Article  PubMed  Google Scholar 

  33. Gatus A, Jamieson G, Stevenson B (2022) Past and future explanations for depersonalization and derealization disorder: a role for predictive coding. Front Hum Neurosci 16:744487. https://doi.org/10.3389/fnhum.2022.744487

    Article  PubMed  PubMed Central  Google Scholar 

  34. Terhaar J, Viola FC, Bär KJ, Debener S (2012) Heartbeat evoked potentials mirror altered body perception in depressed patients. Clin Neurophysiol 123:1950–1957. https://doi.org/10.1016/j.clinph.2012.02.086

    Article  PubMed  Google Scholar 

  35. Koch C, Wilhelm M, Salzmann S, Rief W, Euteneuer F (2019) A meta-analysis of heart rate variability in major depression. Psychol Med 49:1948–1957. https://doi.org/10.1017/S0033291719001351

    Article  PubMed  Google Scholar 

  36. Northoff G, Wiebking C, Feinberg T, Panksepp J (2011) The ‘resting-state hypothesis’ of major depressive disorder-a translational subcortical-cortical framework for a system disorder. Neurosci Biobehav Rev 35(9):1929–1945. https://doi.org/10.1016/j.neubiorev.2010.12.007

    Article  PubMed  Google Scholar 

  37. Tumati S, Paulus MP, Northoff G (2021) Out-of-step: brain–heart desynchronization in anxiety disorders. Mol Psychiatry 26:1726–1737. https://doi.org/10.1038/s41380-021-01029-w

    Article  PubMed  Google Scholar 

  38. Pollatos O, Traut-Mattausch E, Schandry R (2009) Differential effects of anxiety and depression on interoceptive accuracy. Depress Anxiety 26(2):167–173. https://doi.org/10.1002/da.20504

    Article  PubMed  Google Scholar 

  39. Müller LE, Schulz A, Andermann M, Gäbel A, Gescher DM, Spohn A, Herpertz SC, Bertsch K (2015) Cortical representation of afferent bodily signals in borderline personality disorder: neural correlates and relationship to emotional dysregulation. JAMA Psychiatry 72:1077–1086. https://doi.org/10.1001/jamapsychiatry

    Article  PubMed  Google Scholar 

  40. Borchardt V, Fan Y, Dietz M, Melendez ALH, Bajbouj M, Gärtner M, Li M, Walter M, Grimm S (2018) Echoes of affective stimulation in brain connectivity networks. Cereb Cortex 28:4365–4378. https://doi.org/10.1093/cercor/bhx290

    Article  PubMed  Google Scholar 

  41. Pizzagalli DA, Webb CA, Dillon DG, Tenke CE, Kayser J, Goer F, Fava M, McGrath P, Weissman M, Parsey R, Adams P, Trombello J, Cooper C, Deldin P, Oquendo MA, McInnis MG, Carmody T, Bruder G, Trivedi MH (2018) Pretreatment rostral anterior cingulate cortex theta activity in relation to symptom improvement in depression: a randomized clinical trial. JAMA Psychiatry 75(6):547–554. https://doi.org/10.1001/jamapsychiatry.2018.0252

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62. https://doi.org/10.1136/jnnp.23.1.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32:50–55. https://doi.org/10.1111/j.2044-8341.1959.tb00467.x

    Article  CAS  PubMed  Google Scholar 

  44. Chenguang J, Hongliang Z, Limin C, Zhou Z (2021) Problem solving therapy improves effortful cognition in major depression front. Psychiatry 12:607718. https://doi.org/10.3389/fpsyt.2021.607718

    Article  Google Scholar 

  45. Chaumon M, Bishop DV, Busch NA (2015) A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J Neurosci Methods 250:47–63. https://doi.org/10.1016/j.jneumeth.2015.02.025

    Article  PubMed  Google Scholar 

  46. Seedat ZA, Quinn AJ, Vidaurre D, Liuzzi L, Gascoyne LE, Hunt BAE, O’Neill GC, Pakenham DO, Mullinger KJ, Morris PG, Woolrich MW, Brookes MJ (2020) The role of transient spectral ‘bursts’ in functional connectivity: a magnetoencephalography study. Neuroimage 209:116537. https://doi.org/10.1016/j.neuroimage.2020.116537

    Article  PubMed  Google Scholar 

  47. Mainali KP, Slud E, Singer MC, Fagan WF (2022) A Better index for analysis of co-occurrence and similarity. Sci Adv 28:eabj9204. https://doi.org/10.1126/sciadv.abj9204

    Article  Google Scholar 

  48. Furukawa TA, Cipriani A, Cowen PJ, Leucht S, Egger M, Salanti G (2019) Optimal dose of selective serotonin reuptake inhibitors, venlafaxine, and mirtazapine in major depression: a systematic review and dose–response meta-analysis. Lancet Psychiatry 6:6019. https://doi.org/10.1016/S2215-0366(19)30217-2

    Article  Google Scholar 

  49. McCraty R, Shaffer F (2015) Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 4:46–61. https://doi.org/10.7453/gahmj.2014.073

    Article  PubMed  PubMed Central  Google Scholar 

  50. Galvez-Pol A, McConnell R, Kilner JM (2020) Active sampling in visual search is coupled to the cardiac cycle. Cognition 196:104149. https://doi.org/10.1016/j.cognition.2019.104149

    Article  PubMed  Google Scholar 

  51. Grund M, Pabst M, Dabbagh A, Stephani T, Nierhaus T, Gaebler M, Villringer A (2022) Respiration, heartbeat, and conscious tactile perception. J Neurosci 42:643–656. https://doi.org/10.1523/JNEUROSCI.0592-21.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dworkin BR, Elbert T, Rau H, Birbaumer N, Pauli P, Droste C, Brunia CH (1994) Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perception. Proc Natl Acad Sci USA 91:6329–6333. https://doi.org/10.1073/pnas.91.14.6329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martins AQ, Ring C, McIntyre D, Edwards L, Martin U (2009) Effects of unpredictable stimulation on pain and nociception across the cardiac cycle. Pain 147:84–90. https://doi.org/10.1016/j.pain.2009.08.016

    Article  PubMed  Google Scholar 

  54. Nyklícek I, Wijnen V, Rau H (2005) Effects of baroreceptor stimulation and opioids on the auditory startle reflex. Psychophysiology 42:213–222. https://doi.org/10.1111/j.1469-8986.2005.00273.x

    Article  PubMed  Google Scholar 

  55. Richter S, Schulz A, Port J, Blumenthal TD, Schächinger H (2009) Cardiopulmonary baroreceptors affect reflexive startle eye blink. Physiol Behav 98:587–593. https://doi.org/10.1016/j.physbeh.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  56. Young CB, Raz G, Everaerd D, Beckmann CF, Tendolkar I, Hendler T, Fernández G, Hermans EJ (2017) Dynamic shifts in large-scale brain network balance as a function of arousal. J Neurosci 37:281–290. https://doi.org/10.1523/JNEUROSCI.1759-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Esterman M, Rothlein D (2019) Models of sustained attention. Curr Opin Psychol 29:174–180. https://doi.org/10.1016/j.copsyc.2019.03.005

    Article  PubMed  Google Scholar 

  58. Bogdány T, Perakakis P, Bódizs R, Simor P (2022) The heartbeat evoked potential is a questionable biomarker in nightmare disorder: a replication study. Neuroimage Clin 33:102933. https://doi.org/10.1016/j.nicl.2021.102933

    Article  PubMed  Google Scholar 

  59. Bylsma LM (2021) Emotion context insensitivity in depression: toward an integrated and contextualized approach. Psychophysiology 58:e13715. https://doi.org/10.1111/psyp.13715

    Article  PubMed  Google Scholar 

  60. Garfinkel SN, Critchley HD (2016) Threat and the body: how the heart supports fear processing. Trends Cogn Sci 20:34–46. https://doi.org/10.1016/j.tics.2015.10.005

    Article  PubMed  Google Scholar 

  61. Garfinkel SN, Minati L, Gray MA, Seth AK, Dolan RJ, Critchley HD (2014) Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J Neurosci 34:6573–6582. https://doi.org/10.1523/JNEUROSCI.3507-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schiweck C, Piette D, Berckmans D, Claes S, Vrieze E (2019) Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychol Med 49(2):200–211. https://doi.org/10.1017/S0033291718001988

    Article  PubMed  Google Scholar 

  63. Ribeiro MJ, Castelo-Branco M (2019) Neural correlates of anticipatory cardiac deceleration and its association with the speed of perceptual decision-making, in young and older adults. Neuroimage 199:521–533. https://doi.org/10.1016/j.neuroimage.2019.06.004

    Article  PubMed  Google Scholar 

  64. Schneider TR, Hipp JF, Domnick C, Carl C, Büchel C, Engel AK (2018) Modulation of neuronal oscillatory activity in the beta- and gamma-band is associated with current individual anxiety levels. Neuroimage 178:423–434. https://doi.org/10.1016/j.neuroimage.2018.05.059

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the editors and reviewers of this manuscript for many helpful suggestions. This work was supported by the National Natural Science Foundations of China (Grant No. 81871066) and Jiangsu Provincial key research and development program )Grant No. BE2018609).

Author information

Authors and Affiliations

Authors

Contributions

HZ contributed to data curation, formal analysis, writing—original draft, writing—review and editing; XH and ZD contributed to methodology; HZ, XW, TX, HT, and WY contributed to data curation; QL and ZY contributed to data curation, formal analysis, methodology, writing—review and editing.

Corresponding authors

Correspondence to Zhijian Yao or Qing Lu.

Ethics declarations

Conflict of interest

The authors declare that no competing interests exist.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28026 kb)

Supplementary file2 (XLSX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Xiong, T., Dai, Z. et al. Brain–heart interaction disruption in major depressive disorder: disturbed rhythm modulation of the cardiac cycle on brain transient theta bursts. Eur Arch Psychiatry Clin Neurosci 274, 595–607 (2024). https://doi.org/10.1007/s00406-023-01628-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-023-01628-4

Keywords

Navigation