Skip to main content
Log in

A multimodal meta-analysis of regional functional and structural brain abnormalities in obsessive–compulsive disorder

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Numerous neuroimaging studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed abnormalities in specific brain regions in obsessive–compulsive disorder (OCD), but results have been inconsistent. We conducted a whole-brain voxel-wise meta-analysis on resting-state functional imaging and VBM studies that investigated differences of functional activity and gray matter volume (GMV) between patients with OCD and healthy controls (HCs) using seed-based d mapping (SDM) software. A total of 41 independent studies (51 datasets) for resting-state functional imaging and 42 studies (46 datasets) for VBM were included by a systematic literature search. Overall, patients with OCD displayed increased spontaneous functional activity in the bilateral inferior frontal gyrus (IFG) (extending to the bilateral insula) and bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), as well as decreased spontaneous functional activity in the bilateral paracentral lobule, bilateral cerebellum, left caudate nucleus, left inferior parietal gyri, and right precuneus cortex. For the VBM meta-analysis, patients with OCD displayed increased GMV in the bilateral thalamus (extending to the bilateral cerebellum), right striatum, and decreased GMV in the bilateral mPFC/ACC and left IFG (extending to the left insula). The conjunction analyses found that the bilateral mPFC/ACC, left IFG (extending to the left insula) showed decreased GMV with increased intrinsic function in OCD patients compared to HCs. This meta-analysis demonstrated that OCD exhibits abnormalities in both function and structure in the bilateral mPFC/ACC, insula, and IFG. A few regions exhibited only functional or only structural abnormalities in OCD, such as the default mode network, striatum, sensorimotor areas, and cerebellum. It may provide useful insights for understanding the underlying pathophysiology of OCD and developing more targeted and efficacious treatment and intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Pauls DL, Abramovitch A, Rauch SL, Geller DA (2014) Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci 15(6):410–424. https://doi.org/10.1038/nrn3746

    Article  CAS  PubMed  Google Scholar 

  2. Stein DJ, Costa DLC, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG et al (2019) Obsessive-compulsive disorder. Nat Rev Dis Primers 5(1):52. https://doi.org/10.1038/s41572-019-0102-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Micali N, Heyman I, Perez M, Hilton K, Nakatani E, Turner C et al (2010) Long-term outcomes of obsessive-compulsive disorder: follow-up of 142 children and adolescents. Br J Psychiatry 197(2):128–134. https://doi.org/10.1192/bjp.bp.109.075317

    Article  CAS  PubMed  Google Scholar 

  4. Rosa AC, Diniz JB, Fossaluza V, Torres AR, Fontenelle LF, De Mathis AS et al (2012) Clinical correlates of social adjustment in patients with obsessive-compulsive disorder. J Psychiatr Res 46(10):1286–1292. https://doi.org/10.1016/j.jpsychires.2012.05.019

    Article  PubMed  Google Scholar 

  5. Fernández de la Cruz L, Rydell M, Runeson B, D’Onofrio BM, Brander G, Rück C et al (2017) Suicide in obsessive-compulsive disorder: a population-based study of 36,788 Swedish patients. Mol Psychiat 22(11):1626–1632. https://doi.org/10.1038/mp.2016.115

    Article  Google Scholar 

  6. Ruscio AM, Stein DJ, Chiu WT, Kessler RC (2010) The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 15(1):53–63. https://doi.org/10.1038/mp.2008.94

    Article  CAS  PubMed  Google Scholar 

  7. Baxter AJ, Vos T, Scott KM, Ferrari AJ, Whiteford HA (2014) The global burden of anxiety disorders in 2010. Psychol Med 44(11):2363–2374. https://doi.org/10.1017/s0033291713003243

    Article  CAS  PubMed  Google Scholar 

  8. Masdeu JC (2011) Neuroimaging in psychiatric disorders. Neurotherapeutics 8(1):93–102. https://doi.org/10.1007/s13311-010-0006-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kwon JS, Jang JH, Choi JS, Kang DH (2009) Neuroimaging in obsessive-compulsive disorder. Expert Rev Neurother 9(2):255–269. https://doi.org/10.1586/14737175.9.2.255

    Article  PubMed  Google Scholar 

  10. Picó-Pérez M, Moreira PS, de Melo FV, Radua J, Mataix-Cols D, Sousa N et al (2020) Modality-specific overlaps in brain structure and function in obsessive-compulsive disorder: multimodal meta-analysis of case-control MRI studies. Neurosci Biobehav Rev 112:83–94. https://doi.org/10.1016/j.neubiorev.2020.01.033

    Article  PubMed  Google Scholar 

  11. Carlisi CO, Norman LJ, Lukito SS, Radua J, Mataix-Cols D, Rubia K (2017) Comparative multimodal meta-analysis of structural and functional brain abnormalities in autism spectrum disorder and obsessive-compulsive disorder. Biol Psychiat 82(2):83–102. https://doi.org/10.1016/j.biopsych.2016.10.006

    Article  PubMed  Google Scholar 

  12. Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191:133–155. https://doi.org/10.1111/j.1749-6632.2010.05446.x

    Article  PubMed  Google Scholar 

  13. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541. https://doi.org/10.1002/mrm.1910340409

    Article  CAS  PubMed  Google Scholar 

  14. Guerra-Carrillo B, Mackey AP, Bunge SA (2014) Resting-state fMRI: a window into human brain plasticity. Neuroscientist 20(5):522–533. https://doi.org/10.1177/1073858414524442

    Article  PubMed  Google Scholar 

  15. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH et al (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22(7):1326–1333

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Biswal BB, Van Kylen J, Hyde JS (1997) Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed 10(4–5):165–170. https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5%3c165::aid-nbm454%3e3.0.co;2-7

    Article  CAS  PubMed  Google Scholar 

  17. Zang YJM (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional. MRI Brain Dev: 83–91.

  18. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ (Clin Res Ed) 343:d4002. https://doi.org/10.1136/bmj.d4002

  19. Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23(1):37–45. https://doi.org/10.1002/mrm.1910230106

    Article  CAS  PubMed  Google Scholar 

  20. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89(1):212–216. https://doi.org/10.1073/pnas.89.1.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. https://doi.org/10.1073/pnas.98.2.676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi S, Shu L (2006) A review of SPECT studies in psychiatry in China. Neuropsychiatr Dis Treat 2(1):43–51

    PubMed  PubMed Central  Google Scholar 

  23. Phillips AA, Chan FH, Zheng MM, Krassioukov AV, Ainslie PN (2016) Neurovascular coupling in humans: physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab 36(4):647–664. https://doi.org/10.1177/0271678x15617954

    Article  PubMed  Google Scholar 

  24. Zheng Y, Martindale J, Johnston D, Jones M, Berwick J, Mayhew J (2002) A model of the hemodynamic response and oxygen delivery to brain. Neuroimage 16(3 Pt 1):617–637. https://doi.org/10.1006/nimg.2002.1078

    Article  PubMed  Google Scholar 

  25. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400. https://doi.org/10.1016/j.neuroimage.2003.12.030

    Article  PubMed  Google Scholar 

  26. Diener C, Kuehner C, Brusniak W, Ubl B, Wessa M, Flor H (2012) A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression. Neuroimage 61(3):677–685. https://doi.org/10.1016/j.neuroimage.2012.04.005

    Article  PubMed  Google Scholar 

  27. Li Y, Meng Y, Yuan M, Zhang Y, Ren Z, Zhang Y et al (2016) Therapy for adult social anxiety disorder: a meta-analysis of functional neuroimaging studies. J Clin Psychiatry 77(11):e1429–e1438. https://doi.org/10.4088/JCP.15r10226

    Article  PubMed  Google Scholar 

  28. Gray JP, Müller VI, Eickhoff SB, Fox PT (2020) Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies. Am J Psychiatry 177(5):422–434. https://doi.org/10.1176/appi.ajp.2019.19050560

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen G, Wang J, Gong J, Qi Z, Fu S, Tang G, et al (2022) Functional and structural brain differences in bipolar disorder: a multimodal meta-analysis of neuroimaging studies. Psychol Med: 1–13. https://doi.org/10.1017/s0033291722002392

  30. Long J, Luo L, Guo Y, You W, Li Q, Li B et al (2021) Altered spontaneous activity and effective connectivity of the anterior cingulate cortex in obsessive-compulsive disorder. J Comp Neurol 529(2):296–310. https://doi.org/10.1002/cne.24948

    Article  PubMed  Google Scholar 

  31. Yang XY, Sun J, Luo J, Zhong ZX, Li P, Yao SM et al (2015) Regional homogeneity of spontaneous brain activity in adult patients with obsessive-compulsive disorder before and after cognitive behavioural therapy. J Affect Disord 188:243–251. https://doi.org/10.1016/j.jad.2015.07.048

    Article  PubMed  Google Scholar 

  32. Zhu Y, Fan Q, Zhang H, Qiu J, Tan L, Xiao Z et al (2016) Altered intrinsic insular activity predicts symptom severity in unmedicated obsessive-compulsive disorder patients: a resting state functional magnetic resonance imaging study. BMC Psychiatry 16:104. https://doi.org/10.1186/s12888-016-0806-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hou J, Wu W, Lin Y, Wang J, Zhou D, Guo J et al (2012) Localization of cerebral functional deficits in patients with obsessive-compulsive disorder: a resting-state fMRI study. J Affect Disord 138(3):313–321. https://doi.org/10.1016/j.jad.2012.01.022

    Article  PubMed  Google Scholar 

  34. Yang T, Cheng Y, Li H, Jiang H, Luo C, Shan B et al (2010) Abnormal regional homogeneity of drug-naïve obsessive-compulsive patients. NeuroReport 21(11):786–790. https://doi.org/10.1097/WNR.0b013e32833cadf0

    Article  PubMed  Google Scholar 

  35. Ping L, Su-Fang L, Hai-Ying H, Zhang-Ye D, Jia L, Zhi-Hua G, et al (2013) Abnormal spontaneous neural activity in obsessive-compulsive disorder: a resting-state functional magnetic resonance imaging study. PLoS One 8(6):e67262. https://doi.org/10.1371/journal.pone.0067262

  36. Xia J, Fan J, Liu W, Du H, Zhu J, Yi J, et al (2020) Functional connectivity within the salience network differentiates autogenous- from reactive-type obsessive-compulsive disorder. Prog Neuro-psychopharmacol Biol Psychiat 98:109813. https://doi.org/10.1016/j.pnpbp.2019.109813

  37. Yao L, Yang C, Zhang W, Li S, Li Q, Chen L, et al (2021) A multimodal meta-analysis of regional structural and functional brain alterations in type 2 diabetes. Front Neuroendocrinol 62:100915. https://doi.org/10.1016/j.yfrne.2021.100915

  38. Ma X, Liu J, Liu T, Ma L, Wang W, Shi S, et al (2019) Altered resting-state functional activity in medication-naive patients with first-episode major depression disorder vs. healthy control: a quantitative meta-analysis. https://doi.org/10.3389/fnbeh.2019.00089

  39. Su T, Gong J, Tang G, Qiu S, Chen P, Chen G et al (2021) Structural and functional brain alterations in anorexia nervosa: a multimodal meta-analysis of neuroimaging studies. Hum Brain Mapp. https://doi.org/10.1002/hbm.25602

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hu X, Du M, Chen L, Li L, Zhou M, Zhang L et al (2017) Meta-analytic investigations of common and distinct grey matter alterations in youths and adults with obsessive-compulsive disorder. Neurosci Biobehav Rev 78:91–103. https://doi.org/10.1016/j.neubiorev.2017.04.012

    Article  PubMed  Google Scholar 

  41. Park SE, Kim BC, Yang JC, Jeong GW (2020) MRI-based multimodal approach to the assessment of clinical symptom severity of obsessive-compulsive disorder. Psychiat Investig 17(8):777–85. https://doi.org/10.30773/pi.2020.0124

  42. Kodancha PG, Shivakumar V, Jose D, Venkatasubramanian G, Reddy YCJ, Narayanaswamy JC (2020) Gray matter volume abnormalities and clinical correlates in OCD with exclusive washing dimension. Asian J Psychiatr 54:102343. https://doi.org/10.1016/j.ajp.2020.102343

  43. Rus OG, Reess TJ, Wagner G, Zaudig M, Zimmer C, Koch K (2017) Structural alterations in patients with obsessive-compulsive disorder: a surface-based analysis of cortical volume, surface area and thickness. J Psychiatry Neurosci 42(6):395–403. https://doi.org/10.1503/jpn.170030

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hu XY, Liu Q, Li B, Tang WJ, Sun HQ, Li F et al (2016) Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy. Eur Neuropsychopharmacol 26(2):246–254. https://doi.org/10.1016/j.euroneuro.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  45. Subirà M, Sato JR, Alonso P, do Rosário MC, Segalàs C, Batistuzzo MC, et al (2015) Brain structural correlates of sensory phenomena in patients with obsessive–compulsive disorder. J Psychiat Neurosci 40(4):232–40. https://doi.org/10.1503/jpn.140118

  46. de Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchón JM et al (2014) Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. Am J Psychiatry 171(3):340–349. https://doi.org/10.1176/appi.ajp.2013.13040574

    Article  PubMed  Google Scholar 

  47. Ikari K, Nakao T, Nemoto K, Okada K, Murayama K, Honda S et al (2017) Morphologic and clinical differences between early- and late-onset obsessive-compulsive disorder: voxel-based morphometric study. J Obsess Compuls Relat Disord 13:35–41. https://doi.org/10.1016/j.jocrd.2017.02.005

    Article  Google Scholar 

  48. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clin Res ed) 339:b2535. https://doi.org/10.1136/bmj.b2535

  49. Gong J, Wang J, Luo X, Chen G, Huang H, Huang R et al (2020) Abnormalities of intrinsic regional brain activity in first-episode and chronic schizophrenia: a meta-analysis of resting-state functional MRI. J Psychiat Neurosci 45(1):55–68. https://doi.org/10.1503/jpn.180245

    Article  Google Scholar 

  50. Shepherd AM, Matheson SL, Laurens KR, Carr VJ, Green MJ (2012) Systematic meta-analysis of insula volume in schizophrenia. Biol Psychiat 72(9):775–784. https://doi.org/10.1016/j.biopsych.2012.04.020

    Article  PubMed  Google Scholar 

  51. Radua J, Rubia K, Canales-Rodríguez EJ, Pomarol-Clotet E, Fusar-Poli P, Mataix-Cols D (2014) Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Front Psych 5:13. https://doi.org/10.3389/fpsyt.2014.00013

    Article  Google Scholar 

  52. Gao X, Zhang W, Yao L, Xiao Y, Liu L, Liu J et al (2018) Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis. J Psychiat Neurosci 43(2):131–142. https://doi.org/10.1503/jpn.160219

    Article  Google Scholar 

  53. Gong J, Wang J, Qiu S, Chen P, Luo Z, Wang J et al (2020) Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis. Transl Psychiatry 10(1):353. https://doi.org/10.1038/s41398-020-01036-5

    Article  PubMed  PubMed Central  Google Scholar 

  54. Radua J, Mataix-Cols D (2009) Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiat 195(5):393–402. https://doi.org/10.1192/bjp.bp.108.055046

    Article  Google Scholar 

  55. Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A, Zilles K et al (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28(11):1194–1205. https://doi.org/10.1002/hbm.20345

    Article  PubMed  PubMed Central  Google Scholar 

  56. Radua J, Mataix-Cols D, Phillips ML, El-Hage W, Kronhaus DM, Cardoner N et al (2012) A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiat 27(8):605–611. https://doi.org/10.1016/j.eurpsy.2011.04.001

    Article  CAS  Google Scholar 

  57. Müller VI, Cieslik EC, Laird AR, Fox PT, Radua J, Mataix-Cols D et al (2018) Ten simple rules for neuroimaging meta-analysis. Neurosci Biobehav Rev 84:151–161. https://doi.org/10.1016/j.neubiorev.2017.11.012

    Article  PubMed  Google Scholar 

  58. Lieberman MD, Cunningham WA (2009) Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci 4(4):423–428. https://doi.org/10.1093/scan/nsp052

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen ZQ, Du MY, Zhao YJ, Huang XQ, Li J, Lui S et al (2015) Voxel-wise meta-analyses of brain blood flow and local synchrony abnormalities in medication-free patients with major depressive disorder. J Psychiat Neurosci 40(6):401–411. https://doi.org/10.1503/jpn.140119

    Article  Google Scholar 

  60. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin Res ed) 315(7109):629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  Google Scholar 

  61. Radua J, Borgwardt S, Crescini A, Mataix-Cols D, Meyer-Lindenberg A, McGuire PK et al (2012) Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neurosci Biobehav Rev 36(10):2325–2333. https://doi.org/10.1016/j.neubiorev.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  62. Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79(2):217–240. https://doi.org/10.1016/j.neuron.2013.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cai W, Ryali S, Chen T, Li CS, Menon V (2014) Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. J Neurosci 34(44):14652–14667. https://doi.org/10.1523/jneurosci.3048-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Calhoun VD, Adali T, Giuliani NR, Pekar JJ, Kiehl KA, Pearlson GD (2006) Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data. Hum Brain Mapp 27(1):47–62. https://doi.org/10.1002/hbm.20166

    Article  CAS  PubMed  Google Scholar 

  65. Fitzgerald KD, Welsh RC, Gehring WJ, Abelson JL, Himle JA, Liberzon I et al (2005) Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biol Psychiat 57(3):287–294. https://doi.org/10.1016/j.biopsych.2004.10.038

    Article  PubMed  Google Scholar 

  66. Carmi L, Tendler A, Bystritsky A, Hollander E, Blumberger DM, Daskalakis J et al (2019) Efficacy and safety of deep transcranial magnetic stimulation for obsessive-compulsive disorder: a prospective multicenter randomized double-blind placebo-controlled trial. Am J Psychiatry 176(11):931–938. https://doi.org/10.1176/appi.ajp.2019.18101180

    Article  PubMed  Google Scholar 

  67. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22(3):229–244. https://doi.org/10.1016/s0165-0173(96)00011-2

    Article  CAS  PubMed  Google Scholar 

  68. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667. https://doi.org/10.1007/s00429-010-0262-0

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guenot M, Isnard J, Sindou M (2004) Surgical anatomy of the insula. Adv Tech Stand Neurosurg 29:265–288. https://doi.org/10.1007/978-3-7091-0558-0_7

    Article  CAS  PubMed  Google Scholar 

  70. Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G (2003) Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron 40(3):655–664. https://doi.org/10.1016/s0896-6273(03)00679-2

    Article  CAS  PubMed  Google Scholar 

  71. Eng GK, Sim K, Chen SH (2015) Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neurosci Biobehav Rev 52:233–257. https://doi.org/10.1016/j.neubiorev.2015.03.002

    Article  PubMed  Google Scholar 

  72. Del Casale A, Rapinesi C, Kotzalidis GD, De Rossi P, Curto M, Janiri D et al (2016) Executive functions in obsessive-compulsive disorder: an activation likelihood estimate meta-analysis of fMRI studies. World J Biol Psychiat 17(5):378–393. https://doi.org/10.3109/15622975.2015.1102323

    Article  Google Scholar 

  73. Shapira NA, Liu Y, He AG, Bradley MM, Lessig MC, James GA et al (2003) Brain activation by disgust-inducing pictures in obsessive-compulsive disorder. Biol Psychiat 54(7):751–756. https://doi.org/10.1016/s0006-3223(03)00003-9

    Article  PubMed  Google Scholar 

  74. Simmons A, Matthews SC, Paulus MP, Stein MB (2008) Intolerance of uncertainty correlates with insula activation during affective ambiguity. Neurosci Lett 430(2):92–97. https://doi.org/10.1016/j.neulet.2007.10.030

    Article  CAS  PubMed  Google Scholar 

  75. Yildiz S, Uğur K, Taşkent İ, Atmaca M (2020) Insula volume in patients diagnosed with obsessive compulsive disorder and its relation with clinical variables. Noro Psikiyatri Arsivi 57(2):89–92. https://doi.org/10.29399/npa.24830

  76. Del Casale A, Ferracuti S, Rapinesi C, Serata D, Piccirilli M, Savoja V et al (2012) Functional neuroimaging in specific phobia. Psychiatry Res 202(3):181–197. https://doi.org/10.1016/j.pscychresns.2011.10.009

    Article  PubMed  Google Scholar 

  77. Ipser JC, Singh L, Stein DJ (2013) Meta-analysis of functional brain imaging in specific phobia. Psychiatry Clin Neurosci 67(5):311–322. https://doi.org/10.1111/pcn.12055

    Article  PubMed  Google Scholar 

  78. Lee MH, Smyser CD, Shimony JS (2013) Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 34(10):1866–1872. https://doi.org/10.3174/ajnr.A3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ (2005) The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev 29(3):399–419. https://doi.org/10.1016/j.neubiorev.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  80. DeVito EE, Meda SA, Jiantonio R, Potenza MN, Krystal JH, Pearlson GD (2013) Neural correlates of impulsivity in healthy males and females with family histories of alcoholism. Neuropsychopharmacology 38(10):1854–1863. https://doi.org/10.1038/npp.2013.92

    Article  PubMed  PubMed Central  Google Scholar 

  81. Klugah-Brown B, Jiang C, Agoalikum E, Zhou X, Zou L, Yu Q et al (2021) Common abnormality of gray matter integrity in substance use disorder and obsessive-compulsive disorder: a comparative voxel-based meta-analysis. Hum Brain Mapp 42(12):3871–3886. https://doi.org/10.1002/hbm.25471

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chen YH, Li SF, Lv D, Zhu GD, Wang YH, Meng X et al (2018) Decreased intrinsic functional connectivity of the salience network in drug-naïve patients with obsessive-compulsive disorder. Front Neurosci 12:889. https://doi.org/10.3389/fnins.2018.00889

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dixon ML, De La Vega A, Mills C, Andrews-Hanna J, Spreng RN, Cole MW et al (2018) Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci USA 115(7):E1598–E1607. https://doi.org/10.1073/pnas.1715766115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fiske A, Holmboe K (2019) Neural substrates of early executive function development. Dev Rev 52:42–62. https://doi.org/10.1016/j.dr.2019.100866

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gürsel DA, Avram M, Sorg C, Brandl F, Koch K (2018) Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neurosci Biobehav Rev 87:151–160. https://doi.org/10.1016/j.neubiorev.2018.01.016

    Article  PubMed  Google Scholar 

  86. Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76. https://doi.org/10.1146/annurev-clinpsy-032511-143049

    Article  PubMed  Google Scholar 

  87. Phillips AA, Warburton DE, Ainslie PN, Krassioukov AV (2014) Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride. J Cereb Blood Flow Metab 34(5):794–801. https://doi.org/10.1038/jcbfm.2014.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Duschek S, Hadjamu M, Schandry R (2007) Enhancement of cerebral blood flow and cognitive performance following pharmacological blood pressure elevation in chronic hypotension. Psychophysiology 44(1):145–153. https://doi.org/10.1111/j.1469-8986.2006.00472.x

    Article  PubMed  Google Scholar 

  89. Chen Y, Ou Y, Lv D, Yang R, Li S, Jia C et al (2019) Altered network homogeneity of the default-mode network in drug-naive obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 93:77–83. https://doi.org/10.1016/j.pnpbp.2019.03.008

    Article  PubMed  Google Scholar 

  90. Cui G, Ou Y, Chen Y, Lv D, Jia C, Zhong Z et al (2020) Altered global brain functional connectivity in drug-naive patients with obsessive-compulsive disorder. Front Psych 11:98. https://doi.org/10.3389/fpsyt.2020.00098

    Article  Google Scholar 

  91. Gonçalves ÓF, Soares JM, Carvalho S, Leite J, Ganho-Ávila A, Fernandes-Gonçalves A et al (2017) Patterns of default mode network deactivation in obsessive compulsive disorder. Sci Rep 7:44468. https://doi.org/10.1038/srep44468

    Article  PubMed  PubMed Central  Google Scholar 

  92. Packard MG, Knowlton BJ (2002) Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci 25:563–593. https://doi.org/10.1146/annurev.neuro.25.112701.142937

    Article  CAS  PubMed  Google Scholar 

  93. Graybiel AM, Rauch SL (2000) Toward a neurobiology of obsessive-compulsive disorder. Neuron 28(2):343–347. https://doi.org/10.1016/s0896-6273(00)00113-6

    Article  CAS  PubMed  Google Scholar 

  94. Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K et al (2013) Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Sci (New York, NY) 340(6137):1234–1239. https://doi.org/10.1126/science.1234733

    Article  CAS  Google Scholar 

  95. Figee M, Luigjes J, Smolders R, Valencia-Alfonso CE, van Wingen G, de Kwaasteniet B et al (2013) Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat Neurosci 16(4):386–387. https://doi.org/10.1038/nn.3344

    Article  CAS  PubMed  Google Scholar 

  96. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32(3):525–549. https://doi.org/10.1016/j.neubiorev.2007.09.005

    Article  PubMed  Google Scholar 

  97. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869. https://doi.org/10.1038/nrn2478

    Article  CAS  PubMed  Google Scholar 

  98. Norman LJ, Carlisi C, Lukito S, Hart H, Mataix-Cols D, Radua J et al (2016) Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder a comparative meta-analysis. JAMA Psychiat 73(8):815–825. https://doi.org/10.1001/jamapsychiatry.2016.0700

    Article  Google Scholar 

  99. Russo M, Naro A, Mastroeni C, Morgante F, Terranova C, Muscatello MR et al (2014) Obsessive-compulsive disorder: a “sensory-motor” problem? Int J Psychophysiol 92(2):74–78. https://doi.org/10.1016/j.ijpsycho.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  100. Hawken ER, Dilkov D, Kaludiev E, Simek S, Zhang F, Milev R (2016) Transcranial magnetic stimulation of the supplementary motor area in the treatment of obsessive-compulsive disorder: a multi-site study. Int J Mol Sci 17(3):420. https://doi.org/10.3390/ijms17030420

    Article  PubMed  PubMed Central  Google Scholar 

  101. Miquel M, Nicola SM, Gil-Miravet I, Guarque-Chabrera J, Sanchez-Hernandez A (2019) A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Front Behav Neurosci 13:99. https://doi.org/10.3389/fnbeh.2019.00099

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jenkins LM, Barba A, Campbell M, Lamar M, Shankman SA, Leow AD et al (2016) Shared white matter alterations across emotional disorders: a voxel-based meta-analysis of fractional anisotropy. NeuroImage Clin 12:1022–1034. https://doi.org/10.1016/j.nicl.2016.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kh E, Chen SH, Ho MH, Desmond JE (2014) A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Human Brain Map 35(2):593–615. https://doi.org/10.1002/hbm.22194

    Article  Google Scholar 

  104. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex J Dev Study Nervous Syst Behav 46(7):831–844. https://doi.org/10.1016/j.cortex.2009.11.008

    Article  Google Scholar 

  105. Schmahmann JD, Caplan D (2006) Cognition, emotion and the cerebellum. Brain J Neurol 129(Pt 2):290–292. https://doi.org/10.1093/brain/awh729

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the National Natural Science Foundation of China (81671670 and 81971597); National Key R&D Program of China (2020YFC2005700); Key-Area Research and Development Program of Guangdong, China (2020B1111100001); Planned Science and Technology Project of Guangzhou, China (201905010003). The funding organizations played no further role in study design, data collection, analysis and interpretation and paper writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2021 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xiao, S., Su, T. et al. A multimodal meta-analysis of regional functional and structural brain abnormalities in obsessive–compulsive disorder. Eur Arch Psychiatry Clin Neurosci 274, 165–180 (2024). https://doi.org/10.1007/s00406-023-01594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-023-01594-x

Keywords

Navigation