Skip to main content
Log in

A functional neuroimaging association study on the interplay between two schizophrenia genome-wide associated genes (CACNA1C and ZNF804A)

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The CACNA1C and the ZNF804A genes are among the most relevant schizophrenia GWAS findings. Recent evidence shows that the interaction of these genes with the schizophrenia diagnosis modulates brain functional response to a verbal fluency task. To better understand how these genes might influence the risk for schizophrenia, we aimed to study the interplay between CACNA1C and ZNF804A on working memory brain functional correlates. The analyses included functional and behavioural N-back task data (obtained from an fMRI protocol) and CACNA1C-rs1006737 and ZNF804A-rs1344706 genotypes for 78 healthy subjects and 78 patients with schizophrenia (matched for age, sex and premorbid IQ). We tested the effects of the epistasis between these genes as well as of the three-way interaction (CACNA1C × ZNAF804A × diagnosis) on working memory-associated activity (N-back: 2-back vs 1-back). We detected a significant CACNA1C × ZNAF804A interaction on working memory functional response in regions comprising the ventral caudate medially and within the left hemisphere, the superior and inferior orbitofrontal gyrus, the superior temporal pole and the ventral-anterior insula. The individuals with the GWAS-identified risk genotypes (CACNA1C-AA/AG and ZNF804A-AA) displayed a reduced working memory modulation response. This genotypic combination was also associated with opposite brain activity patterns between patients and controls. While further research will help to comprehend the neurobiological mechanisms of this interaction, our data highlight the role of the epistasis between CACNA1C and ZNF804A in the functional mechanisms underlying the pathophysiology of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192. https://doi.org/10.1001/archpsyc.60.12.1187

    Article  PubMed  Google Scholar 

  2. Purcell SM, Wray NR, Stone JL et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752. https://doi.org/10.1038/nature08185

    Article  CAS  PubMed  Google Scholar 

  3. Webber C (2017) Epistasis in neuropsychiatric disorders. Trends Genet 33:256–265. https://doi.org/10.1016/j.tig.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  4. Ripke S, Neale BM, Corvin A et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427. https://doi.org/10.1038/nature13595

    Article  CAS  PubMed Central  Google Scholar 

  5. Pardiñas AF, Holmans P, Pocklington AJ et al (2018) Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet 50:381–389. https://doi.org/10.1038/s41588-018-0059-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Donovan MC, Craddock N, Norton N et al (2008) Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40:1053–1055. https://doi.org/10.1038/ng.201

    Article  CAS  PubMed  Google Scholar 

  7. Green EK, Grozeva D, Jones I et al (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 15:1016–1022. https://doi.org/10.1038/mp.2009.49

    Article  CAS  PubMed  Google Scholar 

  8. Ripke S, O’Dushlaine C, Chambert K et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45:1150–1159. https://doi.org/10.1038/ng.2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hell JW, Westenbroek RE, Warner C et al (1993) Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel α1 subunits. J Cell Biol 123:949–962. https://doi.org/10.1083/jcb.123.4.949

    Article  CAS  PubMed  Google Scholar 

  10. Sinnegger-Brauns MJ, Huber IG, Koschak A et al (2009) Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms. Mol Pharmacol 75:407–414. https://doi.org/10.1124/mol.108.049981

    Article  CAS  PubMed  Google Scholar 

  11. Striessnig J, Pinggera A, Kaur G et al (2014) L-type Ca2+ channels in heart and brain. Wiley Interdiscip Rev Membr Transp Signal 3:15–38. https://doi.org/10.1002/wmts.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhat S, Dao DT, Terrillion CE et al (2012) CACNA1C (Ca v1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol 99:1–14. https://doi.org/10.1016/j.pneurobio.2012.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu D, Yin J, Liang C et al (2019) CACNA1C (rs1006737) may be a susceptibility gene for schizophrenia: an updated meta-analysis. Brain Behav 9:1–8. https://doi.org/10.1002/brb3.1292

    Article  Google Scholar 

  14. Bigos KL, Mattay VS, Callicott JH et al (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Genet Psychiatry 67:939–945. https://doi.org/10.2307/2800087

    Article  Google Scholar 

  15. Yoshimizu T, Pan JQ, Mungenast AE et al (2015) Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Mol Psychiatry 20:162–169. https://doi.org/10.1038/mp.2014.143

    Article  CAS  PubMed  Google Scholar 

  16. Eckart N, Song Q, Yang R et al (2016) Functional characterization of schizophrenia-associated variation in CACNA1C. PLoS ONE 8:e0157086. https://doi.org/10.1371/journal.pone.0157086

    Article  CAS  Google Scholar 

  17. Hill MJ, Jeffries AR, Dobson RJB et al (2012) Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Hum Mol Genet 21:1018–1024. https://doi.org/10.1093/hmg/ddr532

    Article  CAS  PubMed  Google Scholar 

  18. Hill MJ, Bray NJ (2012) Evidence that schizophrenia risk variation in the ZNF804A gene exerts its effects during fetal brain development. Am J Psychiatry 169:1301–1308. https://doi.org/10.1176/appi.ajp.2012.11121845

    Article  PubMed  Google Scholar 

  19. Deans PJM, Raval P, Sellers KJ et al (2017) Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biol Psychiatry 82:49–61. https://doi.org/10.1016/j.biopsych.2016.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chapman RM, Tinsley CL, Hill MJ et al (2019) Convergent evidence that ZNF804A is a regulator of pre-messenger RNA processing and gene expression. Schizophr Bull 45:1267–1278. https://doi.org/10.1093/schbul/sby183

    Article  PubMed  Google Scholar 

  21. Zhou Y, Dong F, Lanz TA et al (2018) Interactome analysis reveals ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery critical for embryonic neurodevelopment. Mol Psychiatry 23:952–962. https://doi.org/10.1038/mp.2017.166

    Article  CAS  PubMed  Google Scholar 

  22. Girgenti MJ, LoTurco JJ, Maher BJ (2012) ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS ONE 7:2–6. https://doi.org/10.1371/journal.pone.0032404

    Article  CAS  Google Scholar 

  23. Tao R, Cousijn H, Jaffe AE et al (2014) Expression of ZNF804A in human brain and alterations in schizophrenia, bipolar disorder, and major depressive disorder a novel transcript fetally regulated by the psychosis risk variant rs1344706. JAMA Psychiat 71:1112–1120. https://doi.org/10.1001/jamapsychiatry.2014.1079

    Article  CAS  Google Scholar 

  24. Penzes P, Cahill ME, Jones KA et al (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293. https://doi.org/10.1038/nn.2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Steinberg S, Mors O, Børglum AD et al (2011) Expanding the range of ZNF804A variants conferring risk of psychosis. Mol Psychiatry 16:59–66. https://doi.org/10.1038/mp.2009.149

    Article  CAS  PubMed  Google Scholar 

  26. Williams HJ, Norton N, Dwyer S et al (2011) Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 16:429–441. https://doi.org/10.1038/mp.2010.36

    Article  CAS  PubMed  Google Scholar 

  27. Meller T, Schmitt S, Stein F et al (2019) Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modulation of attention in healthy subjects. Schizophr Res 208:67–75. https://doi.org/10.1016/j.schres.2019.04.018

    Article  PubMed  Google Scholar 

  28. Soler J, Arias B, Moya J et al (2019) The interaction between the ZNF804A gene and cannabis use on the risk of psychosis in a non-clinical sample. Prog Neuro-Psychopharmacol Biol Psychiatry 89:174–180. https://doi.org/10.1016/j.pnpbp.2018.08.009

    Article  CAS  Google Scholar 

  29. Nyegaard M, Demontis D, Foldager L et al (2010) CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatry 15:119–121. https://doi.org/10.1038/mp.2009.69

    Article  CAS  PubMed  Google Scholar 

  30. Jiang H, Qiao F, Li Z et al (2015) Evaluating the association between CACNA1C rs1006737 and schizophrenia risk: A meta-analysis. Asia Pac Psychiatry 7:260–267. https://doi.org/10.1111/appy.12173

    Article  PubMed  Google Scholar 

  31. Meisenzahl E, Schlösser R (2001) Functional magnetic resonance imaging research in psychiatry. Neuroimaging Clin N Am 11:365–374

    CAS  PubMed  Google Scholar 

  32. Paulus FM, Bedenbender J, Krach S et al (2014) Association of rs1006737 in CACNA1C with alterations in prefrontal activation and fronto-hippocampal connectivity. Hum Brain Mapp 35:1190–1200. https://doi.org/10.1002/hbm.22244

    Article  PubMed  Google Scholar 

  33. Cosgrove D, Mothersill O, Kendall K et al (2017) Cognitive characterization of schizophrenia risk variants involved in synaptic transmission: evidence of CACNA1C’s role in working memory. Neuropsychopharmacology 42:2612–2622. https://doi.org/10.1038/npp.2017.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Esslinger C, Kirsch P, Haddad L et al (2011) Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 54:2514–2523. https://doi.org/10.1016/j.neuroimage.2010.10.012

    Article  PubMed  Google Scholar 

  35. Zhao W, Chen X, Zhang Q et al (2020) Effect of ZNF804A gene polymorphism (rs1344706) on the plasticity of the functional coupling between the right dorsolateral prefrontal cortex and the contralateral hippocampal formation. Neuroimage Clin 27:102279. https://doi.org/10.1016/j.nicl.2020.102279

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Chen X, Yu P et al (2016) Effect of rs1344706 in the ZNF804A gene on the connectivity between the hippocampal formation and posterior cingulate cortex. Schizophr Res 170:48–54. https://doi.org/10.1016/j.schres.2015.11.024

    Article  PubMed  Google Scholar 

  37. Paulus FM, Krach S, Bedenbender J et al (2013) Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Hum Brain Mapp 34:304–313. https://doi.org/10.1002/hbm.21434

    Article  PubMed  Google Scholar 

  38. Esslinger C, Walter H, Kirsch P et al (2009) Neural mechanisms of a genome-wide supported psychosis variant. Science (80-) 324:605. https://doi.org/10.1126/science.1167768

    Article  CAS  Google Scholar 

  39. Zhang Z, Wang Y, Zhang Q et al (2019) The effects of CACNA1C gene polymorphism on prefrontal cortex in both schizophrenia patients and healthy controls. Schizophr Res 204:193–200. https://doi.org/10.1016/j.schres.2018.09.007

    Article  PubMed  Google Scholar 

  40. Rasetti R, Sambataro F, Chen Q et al (2011) Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry 68:1207–1217. https://doi.org/10.1001/archgenpsychiatry.2011.103

    Article  PubMed  Google Scholar 

  41. Tecelão D, Mendes A, Martins D et al (2018) The impact of psychosis genome-wide associated ZNF804A variation on verbal fluency connectivity. J Psychiatr Res 98:17–21. https://doi.org/10.1016/j.jpsychires.2017.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen X, Zhang Z, Zhang Q et al (2018) Effect of rs1344706 in the ZNF804A gene on the brain network. NeuroImage Clin 17:1000–1005. https://doi.org/10.1016/j.nicl.2017.12.017

    Article  PubMed  Google Scholar 

  43. Zhang Y, Yan H, Liao J et al (2018) ZNF804A variation may affect hippocampal-prefrontal resting-state functional connectivity in schizophrenic and healthy individuals. Neurosci Bull 34:507–516. https://doi.org/10.1007/s12264-018-0221-y

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gurung R, Prata DP (2015) What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review. Psychol Med 45:2461–2480. https://doi.org/10.1017/S0033291715000537

    Article  CAS  PubMed  Google Scholar 

  45. Andrews T, Meader S, Vulto-van Silfhout A et al (2015) Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders. PLoS Genet 11:1–22. https://doi.org/10.1371/journal.pgen.1005012

    Article  CAS  Google Scholar 

  46. Tecelão D, Mendes A, Martins D et al (2019) The effect of psychosis associated CACNA1C, and its epistasis with ZNF804A, on brain function. Genes Brain Behav 18:1–12. https://doi.org/10.1111/gbb.12510

    Article  CAS  Google Scholar 

  47. Lee PH, Anttila V, Won H et al (2019) Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179:1469-1482.e11. https://doi.org/10.1016/j.cell.2019.11.020

    Article  CAS  Google Scholar 

  48. Smoller JW, Kendler K, Craddock N et al (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379. https://doi.org/10.1016/S0140-6736(12)62129-1

    Article  CAS  Google Scholar 

  49. Mallas E, Carletti F, Chaddock CA et al (2017) The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder. Genes Brain Behav 16:479–488. https://doi.org/10.1111/gbb.12355

    Article  CAS  PubMed  Google Scholar 

  50. Wechsler D (2001) Escala de inteligencia de Wechsler para adultos—III. TEA Ediciones, S.A, Madrid

    Google Scholar 

  51. Peralta V, Cuesta MJ (1994) Validación de la escala de síntomas positivos y negativos (PANSS) en una muestra de esquizofrénicos españoles. Actas Luso Españolas Neurol Psiquiátrica 22:171–177

    Google Scholar 

  52. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276. https://doi.org/10.1093/schbul/13.2.261

    Article  CAS  PubMed  Google Scholar 

  53. Gomar JJ, Ortiz-Gil J, McKenna PJ et al (2011) Validation of the Word Accentuation Test (TAP) as a means of estimating premorbid IQ in Spanish speakers. Schizophr Res 128:175–176. https://doi.org/10.1016/j.schres.2010.11.016

    Article  PubMed  Google Scholar 

  54. Gevins A, Cutillo B (1993) Spatiotemporal dynamics of component processes in human working memory. Electroencephalogr Clin Neurophysiol 87:128–143. https://doi.org/10.1016/0013-4694(93)90119-g

    Article  CAS  PubMed  Google Scholar 

  55. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  56. Egli T, Coynel D, Spalek K et al (2018) Identification of two distinct working memory-related brain networks in healthy young adults. eNeuro 5:1–19. https://doi.org/10.1523/ENEURO.0222-17.2018

    Article  Google Scholar 

  57. Green DM, Swets JA (1996) Signal detection theory and psychophysics. Krieger, New York

    Google Scholar 

  58. Pomarol-Clotet E, Fatjó-Vilas M, McKenna PJ et al (2010) COMT Val158Met polymorphism in relation to activation and de-activation in the prefrontal cortex: a study in patients with schizophrenia and healthy subjects. Neuroimage 53:899–907. https://doi.org/10.1016/j.neuroimage.2010.04.018

    Article  CAS  PubMed  Google Scholar 

  59. Minzenberg MJ, Laird AR, Thelen S et al (2009) Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66:811–822. https://doi.org/10.1001/archgenpsychiatry.2009.91

    Article  PubMed  PubMed Central  Google Scholar 

  60. Carter CS, Lesh TA, Barch DM (2016) Thresholds, power, and sample sizes in clinical neuroimaging. Biol Psychiatry Cogn Neurosci Neuroimaging 1:99–100. https://doi.org/10.1016/j.bpsc.2016.01.005

    Article  PubMed  Google Scholar 

  61. Rose EJ, Donohoe G (2013) Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia. Schizophr Bull 39:518–526. https://doi.org/10.1093/schbul/sbs056

    Article  PubMed  Google Scholar 

  62. Alballa T, Boone EL, Ma L et al (2021) Exploring the relationship between white matter integrity, cocaine use and GAD polymorphisms using Bayesian model averaging. PLoS ONE. https://doi.org/10.1371/journal.pone.0254776

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ellerbrock I, Sandström A, Tour J et al (2021) Serotonergic gene-to-gene interaction is associated with mood and GABA concentrations but not with pain-related cerebral processing in fibromyalgia subjects and healthy controls. Mol Brain. https://doi.org/10.1186/s13041-021-00789-4

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang D, Hu L, Xu X et al (2019) KIBRA and APOE gene variants affect brain functional network connectivity in healthy older people. J Gerontol Ser A Biol Sci Med Sci 74:1725–1733. https://doi.org/10.1093/gerona/glz004

    Article  CAS  Google Scholar 

  65. Xu Q, Xiong Y, Yuan C et al (2018) ZNF804A rs1344706 interacts with COMT rs4680 to affect prefrontal volume in healthy adults. Brain Imaging Behav 12:13–19. https://doi.org/10.1007/s11682-016-9671-x

    Article  PubMed  Google Scholar 

  66. Marek S, Tervo-Clemmens B, Calabro FJ et al (2022) Reproducible brain-wide association studies require thousands of individuals. Nature 603:654–660. https://doi.org/10.1038/s41586-022-04492-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoenig JM, Heisey DM (2001) The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat 55:19–24. https://doi.org/10.1198/000313001300339897

    Article  Google Scholar 

  68. Levine M, Ensom MHH (2001) Post hoc power analysis: an idea whose time has passed? Pharmacotherapy 21:405–409. https://doi.org/10.1592/phco.21.5.405.34503

    Article  CAS  PubMed  Google Scholar 

  69. Mumford JA (2012) A power calculation guide for FMRI studies. Soc Cogn Affect Neurosci 7:738–742. https://doi.org/10.1093/scan/nss059

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the volunteers participating in the study.

Funding

This study received project funding from: (i) the Instituto de Salud Carlos III through the projects PI15/01420 and PI18/01535, and through the contracts FI19/0352 to MG-R, CD19/00149 to PF-C and CP20/00072 to MF-V (co-funded by European Regional Development Fund (ERDF)/European Social Fund “Investing in your future”); (ii) The Health Department from the Generalitat de Catalunya through contract SLT017/20/000233 to AS-M; (iii) the Comissionat per a Universitats i Recerca del DIUE of the Generalitat de Catalunya (Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR), 2017SGR1271).

Author information

Authors and Affiliations

Authors

Contributions

MF-V and MG-R conceived the study. MG-R, CA-P, AL and AS conducted the DNA extraction and genotyping. PS-P, JO-G, JJG, AG-P, SS and EP-C conducted the recruitment and/or the clinical evaluation. RS, TM and EP-C designed the MRI protocol and supervised the fMRI analyses. PS-P and PF-C pre-processed the fMRI images. MG-R, CA-P and MF-V performed the data curation and the statistical analyses. PF-C, RS and SP participated in the revision of the methodology. MG-R, CA-P and MF-V wrote the first draft and subsequent drafts of the paper. MG-R, CA-P and MF-V interpreted the results and revised the manuscript. MF-V supervised the study activity planning and execution. VM, EP-C and MF-V participated in the funding acquisition. All the authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Edith Pomarol-Clotet or Mar Fatjó-Vilas.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Ethics approval

Ethical approval was obtained from local research ethics committees. All procedures were carried out according to the Declaration of Helsinki.

Consent to participate

All participants provided written informed consent about the study procedures and implications.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guardiola-Ripoll, M., Almodóvar-Payá, C., Lubeiro, A. et al. A functional neuroimaging association study on the interplay between two schizophrenia genome-wide associated genes (CACNA1C and ZNF804A). Eur Arch Psychiatry Clin Neurosci 272, 1229–1239 (2022). https://doi.org/10.1007/s00406-022-01447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-022-01447-z

Keywords

Navigation