Skip to main content
Log in

Genetic profile for dopamine signaling predicts brain functional reactivity to repetitive transcranial magnetic stimulation

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Research integrating molecular and imaging data provides important insights into how the genetic profile associated with dopamine signaling influences inter-individual differences in brain functions. However, the effects of genetic variations in dopamine signaling on the heterogeneity of brain changes induced by repetitive transcranial magnetic stimulation (rTMS) still remain unclear. The current study examined the composite effects of genetic variations in dopamine-related genes on rTMS-induced brain responses in terms of the functional network connectivity and working memory performance. Healthy individuals (n = 30) participated in a randomized, double-blind, sham-controlled study with a crossover design of five consecutive days where active rTMS or sham stimulation sessions were administered over the left dorsolateral prefrontal cortex (DLPFC) of the brain. Participants were mostly women (n = 29) and genotyped for polymorphisms in the catechol-O-methyltransferase and D2 dopamine receptor genes and categorized according to their genetic composite scores: high vs. low dopamine signaling groups. Pre- and post-intervention data of resting-state functional magnetic resonance imaging and working memory performance were obtained from 27 individuals with active rTMS and 30 with sham stimulation sessions. The mean functional connectivity within the resting-state networks centered on the DLPFC increased in the high dopamine signaling group. Working memory performance also improved with rTMS in the high dopamine signaling group compared to that in the low dopamine signaling group. The present results suggest that genetic predisposition to higher dopamine signaling may be a promising neurobiological predictor for rTMS effects on cognitive enhancement.

Trial registration: ClinicalTrials.gov (NCT02932085).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoogendam JM, Ramakers GM, Di Lazzaro V (2010) Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3:95–118

    Article  PubMed  Google Scholar 

  2. Silverstein WK, Noda Y, Barr MS et al (2015) Neurobiological predictors of response to dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation in depression: a systematic review. Depress Anxiety 32:8718–8791

    Article  Google Scholar 

  3. Ridding MC, Ziemann U (2010) Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol 588:2291–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bocchio-Chiavetto L, Miniussi C, Zanardini R et al (2008) 5-HTTLPR and BDNF Val66Met polymorphisms and response to rTMS treatment in drug resistant depression. Neurosci Lett 437:130–134

    Article  CAS  PubMed  Google Scholar 

  5. Malaguti A, Rossini D, Lucca A et al (2011) Role of COMT, 5-HT(1A), and SERT genetic polymorphisms on antidepressant response to transcranial magnetic stimulation. Depress Anxiety 28:568–573

    Article  CAS  PubMed  Google Scholar 

  6. Zanardi R, Magri L, Rossini D et al (2007) Role of serotonergic gene polymorphisms on response to transcranial magnetic stimulation in depression. Eur Neuropsychopharmacol 17:651–657

    Article  CAS  PubMed  Google Scholar 

  7. Otani S, Blond O, Desce JM et al (1998) Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex. Neurosci 85:669–676

    Article  CAS  Google Scholar 

  8. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659–1673

    Article  CAS  PubMed  Google Scholar 

  9. Ghanavati E, Salehinejad MA, De Melo L et al (2022) NMDA receptor-related mechanisms of dopaminergic modulation of tDCS-induced neuroplasticity. Cereb Cortex (Published Online First). https://doi.org/10.1093/cercor/bhac028

    Article  Google Scholar 

  10. Nitsche MA, Lampe C, Antal A et al (2006) Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci 23:1651–1657

    Article  PubMed  Google Scholar 

  11. Monte-Silva K, Kuo MF, Thirugnanasambandam N et al (2009) Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans. J Neurosci 29:6124–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keck ME, Welt T, Müller MB et al (2002) Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology 43:101–109

    Article  CAS  PubMed  Google Scholar 

  13. Funamizu H, Ogiue-Ikeda M, Mukai H et al (2005) Acute repetitive transcranial magnetic stimulation reactivates dopaminergic system in lesion rats. Neurosci Lett 383:77–81

    Article  CAS  PubMed  Google Scholar 

  14. Zangen A, Hyodo K (2002) Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. NeuroReport 13:2401–2405

    Article  CAS  PubMed  Google Scholar 

  15. Kanno M, Matsumoto M, Togashi H et al (2004) Effects of acute repetitive transcranial magnetic stimulation on dopamine release in the rat dorsolateral striatum. J Neurol Sci 217:73–81

    Article  CAS  PubMed  Google Scholar 

  16. Strafella AP, Paus T, Barrett J et al (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:RC157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pogarell O, Koch W, Pöpperl G et al (2006) Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study. J Psychiatr Res 40:307–314

    Article  PubMed  Google Scholar 

  18. Pogarell O, Koch W, Pöpperl G et al (2007) Acute prefrontal rTMS increases striatal dopamine to a similar degree as D-amphetamine. Psychiatry Res 156:251–255

    Article  CAS  PubMed  Google Scholar 

  19. Cho SS, Strafella AP (2009) rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE 4:e6725

    Article  PubMed  PubMed Central  Google Scholar 

  20. Backman L, Nyberg L (2013) Dopamine and training-related working-memory improvement. Neurosci Biobehav Rev 37:2209–2219

    Article  PubMed  Google Scholar 

  21. Backman L, Nyberg L, Lindenberger U et al (2006) The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neurosci Biobehav Rev 30:791–807

    Article  PubMed  Google Scholar 

  22. Cohen JD, Braver TS, Brown JW (2002) Computational perspectives on dopamine function in prefrontal cortex. Curr Opin Neurobiol 12:223–229

    Article  CAS  PubMed  Google Scholar 

  23. Brehmer Y, Rieckmann A, Bellander M et al (2011) Neural correlates of training-related working-memory gains in old age. Neuroimage 58:1110–1120

    Article  PubMed  Google Scholar 

  24. Backman L, Nyberg L, Soveri A et al (2011) Effects of working-memory training on striatal dopamine release. Science 333:718

    Article  PubMed  Google Scholar 

  25. Schacht JP (2016) COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review. Pharmacogenomics J 16:430–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cools R, Arnsten AFT (2022) Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 47:309–328

    Article  PubMed  Google Scholar 

  27. Esslinger C, Schüler N, Sauer C et al (2014) Induction and quantification of prefrontal cortical network plasticity using 5 Hz rTMS and fMRI. Hum Brain Mapp 35:140–151

    Article  PubMed  Google Scholar 

  28. Bagherzadeh Y, Khorrami A, Zarrindast MR et al (2016) Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Exp Brain Res 234:1807–1818

    Article  PubMed  Google Scholar 

  29. Barr MS, Farzan F, Rajji TK et al (2013) Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biol Psychiatry 73:510–517

    Article  PubMed  Google Scholar 

  30. Begemann MJ, Brand BA, Ćurčić-Blake B et al (2020) Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med 50:2465–2486

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fitzgerald PB, Brown TL, Marston NA et al (2003) Transcranial magnetic stimulation in the treatment of depression: a double-blind, placebo-controlled trial. Arch Gen Psychiatry 60:1002–1008

    Article  PubMed  Google Scholar 

  32. Battelli L, Grossman ED, Plow EB (2017) Local immediate versus long-range delayed changes in functional connectivity following rTMS on the visual attention network. Brain Stimul 10:263–269

    Article  PubMed  Google Scholar 

  33. van der Werf YD, Sanz-Arigita EJ, Menning S et al (2010) Modulating spontaneous brain activity using repetitive transcranial magnetic stimulation. BMC Neurosci 11:145

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tik M, Hoffmann A, Sladky R et al (2017) Towards understanding rTMS mechanism of action: stimulation of the DLPFC causes network-specific increase in functional connectivity. Neuroimage 162:289–296

    Article  PubMed  Google Scholar 

  35. Beynel L, Powers JP, Appelbaum LG (2020) Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: a systematic review. Neuroimage 211:116596

    Article  PubMed  Google Scholar 

  36. Plomin R, Haworth CM, Davis OS (2009) Common disorders are quantitative traits. Nat Rev Genet 10:872–878

    Article  CAS  PubMed  Google Scholar 

  37. Davis C, Loxton NJ (2013) Addictive behaviors and addiction-prone personality traits: associations with a dopamine multilocus genetic profile. Addict Behav 38:2306–2312

    Article  PubMed  Google Scholar 

  38. Nikolova YS, Ferrell RE, Manuck SB et al (2011) Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology 36:1940–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dillon DG, Bogdan R, Fagerness J et al (2010) Variation in TREK1 gene linked to depression-resistant phenotype is associated with potentiated neural responses to rewards in humans. Hum Brain Mapp 31:210–221

    PubMed  Google Scholar 

  40. Kohno M, Nurmi EL, Laughlin CP et al (2016) Functional genetic variation in dopamine signaling moderates prefrontal cortical activity during risky decision making. Neuropsychopharmacology 41:695–703

    Article  CAS  PubMed  Google Scholar 

  41. Ising M, Lucae S, Binder EB et al (2009) A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry 66:966–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tunbridge EM, Narajos M, Harrison CH et al (2019) Which dopamine polymorphisms are functional? systematic review and meta-analysis of COMT, DAT, DBH, DDC, DRD1-5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biol Psychiatry 86:608–620

    Article  CAS  PubMed  Google Scholar 

  43. Chen J, Lipska BK, Halim N et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75:807–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noble EP, Blum K, Ritchie T et al (1991) Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 48:648–654

    Article  CAS  PubMed  Google Scholar 

  45. McClintock SM, Reti IM, Carpenter LL et al (2018) Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. J Clin Psychiatry 79:16cs10905

    Article  PubMed  PubMed Central  Google Scholar 

  46. Beam W, Borckardt JJ, Reeves ST et al (2009) An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul 2:50–54

    Article  PubMed  PubMed Central  Google Scholar 

  47. Foerster BU, Tomasi D, Caparelli EC (2005) Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magn Reson Med 54:1261–1267

    Article  PubMed  PubMed Central  Google Scholar 

  48. Salimi-Khorshidi G, Douaud G, Beckmann CF et al (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90:449–468

    Article  PubMed  Google Scholar 

  49. Jenkinson M, Bannister P, Brady M et al (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  PubMed  Google Scholar 

  50. Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106:13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brozoski TJ, Brown RM, Rosvold HE et al (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  CAS  PubMed  Google Scholar 

  52. Goldman-Rakic PS, Muly EC 3rd, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301

    Article  CAS  PubMed  Google Scholar 

  53. Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113-125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bilder RM, Volavka J, Lachman HM et al (2004) The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29:1943–1961

    Article  CAS  PubMed  Google Scholar 

  55. Zhao F, Zhang X, Qin W et al (2015) Network-dependent modulation of COMT and DRD2 polymorphisms in healthy young adults. Sci Rep 5:17996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tunbridge EM, Farrell SM, Harrison PJ et al (2013) Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest. Neuroimage 68:49–54

    Article  CAS  PubMed  Google Scholar 

  57. Sanna A, Fattore L, Badas P et al (2021) The hypodopaminergic state ten years after: transcranial magnetic stimulation as a tool to test the dopamine hypothesis of drug addiction. Curr Opin Pharmacol 56:61–67

    Article  CAS  PubMed  Google Scholar 

  58. Kimberg DY, D’Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depend on working memory capacity. NeuroReport 8:3581–3585

    Article  CAS  PubMed  Google Scholar 

  59. Apud JA, Mattay V, Chen J et al (2007) Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology 32:1011–1020

    Article  CAS  PubMed  Google Scholar 

  60. Furman DJ, White RL 3rd, Naskolnakorn J et al (2020) Effects of dopaminergic drugs on cognitive control processes vary by genotype. J Cogn Neurosci 32:804–821

    Article  PubMed  Google Scholar 

  61. Farrell SM, Tunbridge EM, Braeutigam S et al (2012) COMT Val(158)Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol Psychiatry 71:538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schacht JP, Voronin KE, Randall PK et al (2018) Dopaminergic genetic variation influences aripiprazole effects on alcohol self-administration and the neural response to alcohol cues in a randomized trial. Neuropsychopharmacology 43:1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaneko H, Miura I, Kanno-Nozaki K et al (2018) COMT Val 108/158 Met polymorphism and treatment response to aripiprazole in patients with acute schizophrenia. Neuropsychiatr Dis Treat 14:1657–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peitl V, Štefanović M, Orlović I et al (2021) Long acting aripiprazole influences cognitive functions in recent onset schizophrenia. Psychopharmacology 238:1563–1573

    Article  CAS  PubMed  Google Scholar 

  65. Blasi G, Selvaggi P, Fazio L et al (2015) Variation in dopamine D2 and serotonin 5-HT2A receptor genes is associated with working memory processing and response to treatment with antipsychotics. Neuropsychopharmacology 40:1600–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pettorruso M, Di Giuda D, Martinotti G et al (2019) Dopaminergic and clinical correlates of high-frequency repetitive transcranial magnetic stimulation in gambling addiction: a SPECT case study. Addict Behav 93:246–249

    Article  PubMed  Google Scholar 

  67. Malik S, Jacobs M, Cho SS et al (2018) Deep TMS of the insula using the H-coil modulates dopamine release: a crossover [11C] PHNO-PET pilot trial in healthy humans. Brain Imaging Behav 12:1306–1317

    Article  PubMed  Google Scholar 

  68. Jääskeläinen SK, Lindholm P, Valmunen T et al (2014) Variation in the dopamine D2 receptor gene plays a key role in human pain and its modulation by transcranial magnetic stimulation. Pain 155:2180–2187

    Article  PubMed  Google Scholar 

  69. Lang N, Speck S, Harms J et al (2008) Dopaminergic potentiation of rTMS-induced motor cortex inhibition. Biol Psychiatry 63:231–233

    Article  CAS  PubMed  Google Scholar 

  70. Hsieh TH, Huang YZ, Rotenberg A et al (2015) Functional dopaminergic neurons in substantia nigra are required for transcranial magnetic stimulation-induced motor plasticity. Cereb Cortex 25:1806–1814

    Article  PubMed  Google Scholar 

  71. Etiévant A, Manta S, Latapy C et al (2015) Repetitive transcranial magnetic stimulation induces long-lasting changes in protein expression and histone acetylation. Sci Rep 5:16873

    Article  PubMed  PubMed Central  Google Scholar 

  72. Diaz Heijtz R, Almeida R, Eliasson AC et al (2018) Genetic variation in the dopamine system influences intervention outcome in children with cerebral palsy. EBioMedicine 28:162–167

    Article  PubMed  PubMed Central  Google Scholar 

  73. Westin GG, Bassi BD, Lisanby SH et al (2014) Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications. Clin Neurophysiol 125:142–147

    Article  PubMed  Google Scholar 

  74. Mir-Moghtadaei A, Caballero R, Fried P et al (2015) Concordance between BeamF3 and MRI-neuronavigated target sites for repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex. Brain Stimul 8:965–973

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fitzgerald PB, Hoy K, McQueen S et al (2009) A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression. Neuropsychopharmacology 34:1255–1262

    Article  PubMed  Google Scholar 

  76. Padala PR, Padala KP, Lensing SY et al (2018) Repetitive transcranial magnetic stimulation for apathy in mild cognitive impairment: a double-blind, randomized, sham-controlled, cross-over pilot study. Psychiatry Res 261:312–318

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2020R1A6A1A03043528 and NRF-2020M3E5D9080555 to IKL; 2019R1A2C1089515 to SML) and by the Health Fellowship Foundation to HH. The funders had no role study design, data collection, data analysis, data interpretation, manuscript preparation, manuscript review, manuscript approval, or decision to submit the manuscript for publication. The manuscript has not been previously published in print or electronic format and is not under consideration for publication elsewhere.

Funding

This article was funded by National Research Foundation of Korea (2020R1A6A1A0304352, 2020M3E5D9080555, 2019R1A2C1089515).

Author information

Authors and Affiliations

Authors

Contributions

IKL, SY, SML and SL designed the study. HH, RYK, SY, and SL acquired the data. HH, RYK, SML and SL analyzed the data. All authors interpreted the data. HH, RYK, SML and SL wrote the article. All authors reviewed the article. All authors approved the final version to be published and can certify that no other individuals not listed as authors have made substantial contributions to the paper.

Corresponding authors

Correspondence to Soo Mee Lim or Suji Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the Institutional Review Board of Ewha W. University Mokdong Hospital.

Consent for participate

All patients provided written informed consent, in accordance with the 1964 Declaration of Helsinki.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1504 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, H., Kim, R.Y., Song, Y. et al. Genetic profile for dopamine signaling predicts brain functional reactivity to repetitive transcranial magnetic stimulation. Eur Arch Psychiatry Clin Neurosci 273, 99–111 (2023). https://doi.org/10.1007/s00406-022-01436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-022-01436-2

Keywords

Navigation