Skip to main content

Advertisement

Log in

Intake of 7,8-dihydroxyflavone from pregnancy to weaning prevents cognitive deficits in adult offspring after maternal immune activation

  • Short Communication
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin receptor kinase B (TrkB) signaling plays a key role in the brain neurodevelopment. The exposure of pregnant mice to polyinosinic–polycytidylic acid [poly(I:C)] causes cognitive deficits in adult offspring. Supplementation with a TrkB agonist, 7,8-dihydroxyflavone, in poly(I:C)-treated pregnant mice from pregnancy to weaning could prevent the onset of cognitive deficits and reduced BDNF–TrkB signaling in the prefrontal cortex of their adult offspring. These findings suggest that supplementation with a TrkB agonist in pregnant women with an ultra-high risk of psychosis may reduce the development of psychosis in their offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280

    Article  PubMed  PubMed Central  Google Scholar 

  2. Khandaker GM, Zimbron J, Lewis G, Jones PB (2013) Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med 43:239–257

    Article  CAS  PubMed  Google Scholar 

  3. Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, Prinssen EP (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10:643–660

    Article  CAS  PubMed  Google Scholar 

  4. Susser ES, Lin SP (1992) Schizophrenia after prenatal exposure to the Dutch hunger winter of 1944–1945. Arch Gen Psychaitry 49:983–988

    Article  CAS  Google Scholar 

  5. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, Zheng X, Gu N, Feng G, Sham P, He L (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294:557–562

    Article  CAS  PubMed  Google Scholar 

  6. Susser E, St Clair D (2013) Prenatal famine and adult mental illness: interpreting concordant and discordant results from the Dutch and Chinese Famines. Soc Sci Med 97:325–330

    Article  PubMed  Google Scholar 

  7. Hashimoto K (2014) Targeting of NMDA receptors in new treatments for schizophrenia. Expert Opin Ther Targets 18:1049–1063

    Article  CAS  PubMed  Google Scholar 

  8. Freedman R, Ross RG (2015) Prenatal choline and the development of schizophrenia. Shanghai Arch Psychiatry 27:90–102

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Seidman LJ, Nordentoft M (2015) New targets for prevention of schizophrenia: is it time for interventions in the premorbid phase? Schizophr Bull 41:795–800

    Article  PubMed  PubMed Central  Google Scholar 

  10. Susser E, Keyes KM (2017) Prenatal nutritional deficiency and psychosis. Where do we go from here? JAMA Psychaitry 74:349–350

    Article  Google Scholar 

  11. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9:947–957

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Selemon LD, Zecevic N (2015) Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry 5:e623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fusar-Poli P, Deste G, Smieskova R, Barlati S, Yung AR, Howes O, Stieglitz RD, Vita A, McGuire P, Borgwardt S (2012) Cognitive functioning in prodromal psychosis: a meta-analysis. Arch Gen Psychiatry 69:562–571

    PubMed  Google Scholar 

  14. Seidman LJ, Shapiro DI, Stone WS, Woodberry KA, Ronzio A, Cornblatt BA, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Mathalon DH, McGlashan TH, Perkins DO, Tsuang MT, Walker EF, Woods SW (2016) Association of neurocognition with transition to psychosis: baseline functioning in the second phase of the North American Prodrome Longitudinal Study. JAMA Psychiatry 73:1239–1248

    Article  PubMed  Google Scholar 

  15. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59:46–554

    Article  Google Scholar 

  16. Meyer U, Feldon J (2009) Neural basis of psychosis-related behaviour in the infection model of schizophrenia. Behav Brain Res 204:322–334

    Article  CAS  PubMed  Google Scholar 

  17. Yoshimi N, Futamura T, Hashimoto K (2013) Prenatal immune activation and subsequent peripubertal stress as a new model of schizophrenia. Expert Rev Neurother 13:747–750

    Article  CAS  PubMed  Google Scholar 

  18. Han M, Zhang JC, Yao W, Yang C, Ishima T, Ren Q, Ma M, Dong C, Huang XF, Hashimoto K (2016) Intake of 7,8-dihydroxyflavone during juvenile and adolescent stages prevents onset of osychosis in adult offspring after maternal immune activation. Sci Rep 6:36087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fujita Y, Ishima T, Hashimoto K (2016) Supplementation with d-serine prevents the onset of cognitive deficits in adult offspring after maternal immune activation. Sci Rep 6:37261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hashimoto K (2013) Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression. Prog Neurobiol 100:15–29

    Article  CAS  PubMed  Google Scholar 

  21. Nieto R, Kukuljan M, Silva H (2013) BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry 4:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castrén E (2014) Neurotrophins and psychiatric disorders. Handb Exp Pharmacol 220:461–479

    Article  PubMed  Google Scholar 

  23. Han M, Zhang JC, Hashimoto K (2017) Increased levels of C1q in the prefrontal cortex of adult offspring after maternal immune activation: prevention by 7,8-dihydroxyflavone. Clin Psychopharmacol Neurosci 15:64–67

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu C, Chan CB, Ye K (2016) 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Transl Neurodegener 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35:528–548

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for the Japan Society for the Promotion of Science (JSPS) (Tokyo, Japan) (to K.H.) (Grant No 16F14711). Dr. Mei Han was supported by Postdoctoral Fellowship for Overseas Researchers of JSPS (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Zhang, Jc., Huang, XF. et al. Intake of 7,8-dihydroxyflavone from pregnancy to weaning prevents cognitive deficits in adult offspring after maternal immune activation. Eur Arch Psychiatry Clin Neurosci 267, 479–483 (2017). https://doi.org/10.1007/s00406-017-0802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-017-0802-1

Keywords

Navigation