Skip to main content
Log in

High levels of neuroticism are associated with decreased cortical folding of the dorsolateral prefrontal cortex

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 04 May 2017

This article has been updated

Abstract

The personality trait neuroticism has been identified as a vulnerability factor for common psychiatric diseases and defining potential neuroanatomical markers for early recognition and prevention strategies is mandatory. Because both personality traits and cortical folding patterns are early imprinted and timely stable there is reason to hypothesize an association between neuroticism and cortical folding. Thus, to identify a putative linkage, we tested whether the degree of neuroticism is associated with local cortical folding in a sample of 109 healthy individuals using a surface-based MRI approach. Based on previous findings we additionally tested for a potential association with cortical thickness. We found a highly significant negative correlation between the degree of neuroticism and local cortical folding of the left dorsolateral prefrontal cortex (DLPFC), i.e., high levels of neuroticism were associated with low cortical folding of the left DLPFC. No association was found with cortical thickness. The present study is the first to describe a linkage between the extent of local cortical folding and the individual degree of neuroticism in healthy subjects. Because neuroticism is a vulnerability factor for common psychiatric diseases such as depression our finding indicates that alterations of DLPFC might constitute a neurobiological marker elevating risk for psychiatric burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 04 May 2017

    An erratum to this article has been published.

References

  1. Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K (1995) The ontogeny of human gyrification. Cereb Cortex 5:56–63

    Article  CAS  PubMed  Google Scholar 

  2. Bjornebekk A, Fjell AM, Walhovd KB, Grydeland H, Torgersen S, Westlye LT (2013) Neuronal correlates of the five factor model (ffm) of human personality: multimodal imaging in a large healthy sample. Neuroimage 65:194–208

    Article  PubMed  Google Scholar 

  3. Borkenau P, Ostendorf F (1993) Neo-fünf-faktoren-inventar (neo-ffi) nach costa und mccrae. Hogrefe, Göttingen

    Google Scholar 

  4. Bouchard TJ Jr, McGue M (2003) Genetic and environmental influences on human psychological differences. J Neurobiol 54:4–45

    Article  PubMed  Google Scholar 

  5. Caspi A, Harrington H, Milne B, Amell JW, Theodore RF, Moffitt TE (2003) Children’s behavioral styles at age 3 are linked to their adult personality traits at age 26. J Pers 71:495–513

    Article  PubMed  Google Scholar 

  6. Chan SWY, Harmer CJ, Norbury R, O’Sullivan U, Goodwin GM, Portella MJ (2016) Hippocampal volume in vulnerability and resilience to depression. J Affect Disord 189:199–202

    Article  PubMed  Google Scholar 

  7. Costa PT, McCrae RR (1992) Revised neo personality inventory (neo pi-r) and neo five factor inventory. Professional manual. Odessa, Fl: Psychological Assessment Resources

  8. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  PubMed  Google Scholar 

  9. de Moor MH, van den Berg SM, Verweij KJ, Krueger RF, Luciano M, Arias Vasquez A, Matteson LK, Derringer J, Esko T, Amin N, Gordon SD, Hansell NK, Hart AB, Seppala I, Huffman JE, Konte B, Lahti J, Lee M, Miller M, Nutile T, Tanaka T, Teumer A, Viktorin A, Wedenoja J, Abecasis GR, Adkins DE, Agrawal A, Allik J, Appel K, Bigdeli TB, Busonero F, Campbell H, Costa PT, Davey Smith G, Davies G, de Wit H, Ding J, Engelhardt BE, Eriksson JG, Fedko IO, Ferrucci L, Franke B, Giegling I, Grucza R, Hartmann AM, Heath AC, Heinonen K, Henders AK, Homuth G, Hottenga JJ, Iacono WG, Janzing J, Jokela M, Karlsson R, Kemp JP, Kirkpatrick MG, Latvala A, Lehtimaki T, Liewald DC, Madden PA, Magri C, Magnusson PK, Marten J, Maschio A, Medland SE, Mihailov E, Milaneschi Y, Montgomery GW, Nauck M, Ouwens KG, Palotie A, Pettersson E, Polasek O, Qian Y, Pulkki-Raback L, Raitakari OT, Realo A, Rose RJ, Ruggiero D, Schmidt CO, Slutske WS, Sorice R, Starr JM, St Pourcain B, Sutin AR, Timpson NJ, Trochet H, Vermeulen S, Vuoksimaa E, Widen E, Wouda J, Wright MJ, Zgaga L, Porteous D, Minelli A, Palmer AA, Rujescu D, Ciullo M, Hayward C, Rudan I, et al. (2015) Meta-analysis of genome-wide association studies for neuroticism, and the polygenic association with major depressive disorder. JAMA Psychiatry, Chicago

  10. Dima D, Friston KJ, Stephan KE, Frangou S (2015) Neuroticism and conscientiousness respectively constrain and facilitate short-term plasticity within the working memory neural network. Hum Brain Mapp 36:4158–4163

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eisenberger NI, Lieberman MD, Satpute AB (2005) Personality from a controlled processing perspective: an fmri study of neuroticism, extraversion, and self-consciousness. Cogn Affect Behav Neurosci 5:169–181

    Article  PubMed  Google Scholar 

  12. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. Ii: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  14. Forbes CE, Poore JC, Krueger F, Barbey AK, Solomon J, Grafman J (2014) The role of executive function and the dorsolateral prefrontal cortex in the expression of neuroticism and conscientiousness. Soc Neurosci 9:139–151

    Article  PubMed  Google Scholar 

  15. Fornito A, Yucel M, Wood SJ, Adamson C, Velakoulis D, Saling MM, McGorry PD, Pantelis C (2008) Surface-based morphometry of the anterior cingulate cortex in first episode schizophrenia. Hum Brain Mapp 29:478–489

    Article  PubMed  Google Scholar 

  16. Gaser C, Luders E, Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL (2006) Increased local gyrification mapped in Williams syndrome. Neuroimage 33:46–54

    Article  PubMed  Google Scholar 

  17. Goldman-Rakic PS (1980) Morphological consequences of prenatal injury to the primate brain. Prog Brain Res 53:1–19

    CAS  PubMed  Google Scholar 

  18. Gray AJM, McNaughton N (2000) The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  19. Greene JD, Nystrom LE, Engell AD, Darley JM, Cohen JD (2004) The neural bases of cognitive conflict and control in moral judgment. Neuron 44:389–400

    Article  CAS  PubMed  Google Scholar 

  20. Khan AA, Jacobson KC, Gardner CO, Prescott CA, Kendler KS (2005) Personality and comorbidity of common psychiatric disorders. Brit J Psychiat 186:190–196

    Article  PubMed  Google Scholar 

  21. Koelsch S, Skouras S, Jentschke S (2013) Neural correlates of emotional personality: a structural and functional magnetic resonance imaging study. PLoS ONE 8:e77196

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kotov R, Gamez W, Schmidt F, Watson D (2010) Linking “big” personality traits to anxiety, depressive, and substance use disorders: a meta-analysis. Psychol Bull 136:768–821

    Article  PubMed  Google Scholar 

  23. Kruschwitz JD, Walter M, Varikuti D, Jensen J, Plichta MM, Haddad L, Grimm O, Mohnke S, Pohland L, Schott B, Wold A, Muhleisen TW, Heinz A, Erk S, Romanczuk-Seiferth N, Witt SH, Nothen MM, Rietschel M, Meyer-Lindenberg A, Walter H (2015) 5-httlpr/rs25531 polymorphism and neuroticism are linked by resting state functional connectivity of amygdala and fusiform gyrus. Brain Struct Funct 220:2373–2385

    Article  CAS  PubMed  Google Scholar 

  24. Liu WY, Weber B, Reuter M, Markett S, Chu WC, Montag C (2013) The big five of personality and structural imaging revisited: a vbm—dartel study. Neuro Rep 24:375–380

    Google Scholar 

  25. Lu F, Huo Y, Li M, Chen H, Liu F, Wang Y, Long Z, Duan X, Zhang J, Zeng L, Chen H (2014) Relationship between personality and gray matter volume in healthy young adults: a voxel-based morphometric study. PLoS ONE 9:e88763

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lucas RE, Donnellan MB (2013) Personality development across the life span: longitudinal analyses with a national sample from germany. J Pers Soc Psychol 101:847–861

    Article  Google Scholar 

  27. Luders E, Thompson PM, Narr KL, Toga AW, Jancke L, Gaser C (2006) A curvature-based approach to estimate local gyrification on the cortical surface. Neuroimage 29:1224–1230

    Article  CAS  PubMed  Google Scholar 

  28. Ochsner KN, Silvers JA, Buhle JT (2012) Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci 1251:E1–E24

    Article  PubMed  PubMed Central  Google Scholar 

  29. Penttilae J, Paillere-Martinot ML, Martinot JL, Ringuenet D, Wessa M, Houenou J, Gallarda T, Bellivier F, Galinowski A, Bruguiere P, Pinabel F, Leboyer M, Olie JP, Duchesnay E, Artiges E, Mangin JF, Cachia A (2009) Cortical folding in patients with bipolar disorder or unipolar depression. J Psychiatr Neurosci 34:127–135

    Google Scholar 

  30. Piccirillo G, Magri D, Ogawa M, Song J, Chong VJ, Han S, Joung B, Choi EK, Hwang S, Chen LS, Lin SF, Chen PS (2009) Autonomic nervous system activity measured directly and qt interval variability in normal and pacing-induced tachycardia heart failure dogs. J Am Coll Cardiol 54:840–850

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rietschel M, Beckmann L, Strohmaier J, Georgi A, Karpushova A, Schirmbeck F, Boesshenz KV, Schmal C, Burger C, Jamra RA, Schumacher J, Hofels S, Kumsta R, Entringer S, Krug A, Markov V, Maier W, Propping P, Wust S, Kircher T, Nothen MM, Cichon S, Schulze TG (2008) G72 and its association with major depression and neuroticism in large population-based groups from germany. Am J Psychiatry 165:753–762

    Article  PubMed  Google Scholar 

  32. Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I, Gaser C, Schachtzabel C, Reichenbach JR, Sauer H, Schlosser RG (2010) Increased parahippocampal and lingual gyrification in first-episode schizophrenia. Schizophr Res 123:137–144

    Article  PubMed  Google Scholar 

  33. Schultz CC, Wagner G, Koch K, Gaser C, Roebel M, Schachtzabel C, Nenadic I, Reichenbach JR, Sauer H, Schlosser RG (2013) The visual cortex in schizophrenia: alterations of gyrification rather than cortical thickness–a combined cortical shape analysis. Brain Struct Funct 218:51–58

    Article  PubMed  Google Scholar 

  34. Uchida M, Biederman J, Gabrieli JD, Micco J, de Los Angeles C, Brown A, Kenworthy T, Kagan E, Whitfield-Gabrieli S (2015) Emotion regulation ability varies in relation to intrinsic functional brain architecture. Social Cognit Affect Neurosci 10(12):1738–1748

    Article  Google Scholar 

  35. van den Oord EJ, Kuo PH, Hartmann AM, Webb BT, Moller HJ, Hettema JM, Giegling I, Bukszar J, Rujescu D (2008) Genomewide association analysis followed by a replication study implicates a novel candidate gene for neuroticism. Arch Gen Psychiatry 65:1062–1071

    Article  PubMed  Google Scholar 

  36. Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Article  PubMed  Google Scholar 

  37. Ward BD (2000) Simultaneous inference for fmri data. AFNI 3dDeconvolve Documentation, Medical College of Wisconsin

  38. White T, Andreasen NC, Nopoulos P, Magnotta V (2003) Gyrification abnormalities in childhood- and adolescent-onset schizophrenia. Biol Psychiatry 54:418–426

    Article  PubMed  Google Scholar 

  39. White T, Hilgetag CC (2011) Gyrification and neural connectivity in schizophrenia. Dev Psychopathol 23:339–352

    Article  PubMed  Google Scholar 

  40. Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, Duggirala R, Glahn DC (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53:1135–1146

    Article  PubMed  Google Scholar 

  41. Wright CI, Feczko E, Dickerson B, Williams D (2007) Neuroanatomical correlates of personality in the elderly. Neuroimage 35:263–272

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wright CI, Williams D, Feczko E, Barrett LF, Dickerson BC, Schwartz CE, Wedig MM (2006) Neuroanatomical correlates of extraversion and neuroticism. Cereb Cortex 16:1809–1819

    Article  PubMed  Google Scholar 

  43. Zhang YC, Yu CS, Zhou Y, Li KC, Li C, Jiang TZ (2009) Decreased gyrification in major depressive disorder. NeuroReport 20:378–380

    Article  PubMed  Google Scholar 

  44. Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bundesministerium für Bildung und Forschung, BMBF Grant 01GW0740 and an IZKF Young Scientist Grant (to C. C. S.). The sponsor served no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Christoph Schultz.

Ethics declarations

Conflict of interest

All the authors report no financial, personal or other relationships with other people or organizations that could inappropriately influence, or be perceived to influence, their work.

Additional information

The original version of this article was revised: The corresponding author C. Christoph Schultz was tagged incorrectly in the metadata of the article. This error has been corrected.

An erratum to this article is available at https://doi.org/10.1007/s00406-017-0804-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultz, C.C., Warziniak, H., Koch, K. et al. High levels of neuroticism are associated with decreased cortical folding of the dorsolateral prefrontal cortex. Eur Arch Psychiatry Clin Neurosci 267, 579–584 (2017). https://doi.org/10.1007/s00406-017-0795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-017-0795-9

Keywords

Navigation