Skip to main content
Log in

Orbitofrontal sulcogyral pattern and olfactory sulcus depth in the schizophrenia spectrum

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Morphological changes in the orbitofrontal cortex (OFC), such as an altered sulcogyral pattern of the ‘H-shaped’ orbital sulcus and a shallow olfactory sulcus, have been demonstrated in schizophrenia, possibly reflecting deviations in early neurodevelopment. However, it remains unclear whether patients with schizotypal features exhibit similar OFC changes. This magnetic resonance imaging study examined the OFC sulcogyral pattern (Types I, II, III, and IV) and olfactory sulcus morphology in 102 patients with schizophrenia, 47 patients with schizotypal disorder, and 84 healthy controls. The OFC sulcogyral pattern distribution between the groups was significantly different on the right hemisphere, with the schizophrenia patients showing a decrease in Type I (vs controls and schizotypal patients) and an increase in Type III (vs controls) expression. However, the schizotypal patients and controls did not differ in the OFC pattern. There were significant group differences in the olfactory sulcus depth bilaterally (schizophrenia patients < schizotypal patients < controls). Our findings suggest that schizotypal disorder, a milder form of schizophrenia spectrum disorders, partly shares the OFC changes (i.e., altered depth of the olfactory sulcus) with schizophrenia, possibly reflecting a common disease vulnerability. However, altered distribution of the OFC pattern specific to schizophrenia may at least partly reflect neurodevelopmental pathology related to a greater susceptibility to overt psychosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siever LJ, Kalus OF, Keefe RSE (1993) The boundaries of schizophrenia. Psychiatr Clin North Am 16:217–244

    CAS  PubMed  Google Scholar 

  2. Siever LJ, Davis KL (2004) The pathophysiology of schizophrenia disorders: perspective from the spectrum. Am J Psychiatry 161:398–413

    Article  PubMed  Google Scholar 

  3. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association Press, Washington, DC

    Google Scholar 

  4. World Health Organization (1992) The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. World Health Organization, Geneva

    Google Scholar 

  5. Fervaha G, Remington G (2013) Neuroimaging findings in schizotypal personality disorder: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry 43:96–107

    Article  PubMed  Google Scholar 

  6. Hazlett EA, Goldstein KE, Kolaitis JC (2012) A review of structural MRI and diffusion tensor imaging in schizotypal personality disorder. Curr Psychiatry Rep 14:70–78

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rosales RK, Lemay MJ, Yakovley PI (1968) The development and involution of massa intermedia with regard to age and sex. J Neuropathol Exp Neurol 27:166

    CAS  PubMed  Google Scholar 

  8. Takahashi T, Suzuki M, Zhou SY, Nakamura K, Tanino R, Kawasaki Y, Seal ML, Seto H, Kurachi M (2008) Prevalence and length of the adhesio interthalamica in schizophrenia spectrum disorders. Psychiatry Res 164:90–94

    Article  PubMed  Google Scholar 

  9. Chiavaras MM, Petrides M (2000) Orbitofrontal sulci of the human and macaque monkey brain. J Comp Neurol 422:35–54

    Article  CAS  PubMed  Google Scholar 

  10. Chakirova G, Welch KA, Moorhead TW, Stanfield AC, Hall J, Skehel P, Brown VJ, Johnstone EC, Owens DG, Lawrie SM, McIntosh AM (2010) Orbitofrontal morphology in people at high risk of developing schizophrenia. Eur Psychiatry 25:366–372

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura M, Nestor PG, McCarley RW, Levitt JJ, Hsu L, Kawashima T, Niznikiewicz M, Shenton ME (2007) Altered orbitofrontal sulcogyral pattern in schizophrenia. Brain 130:693–707

    Article  PubMed Central  PubMed  Google Scholar 

  12. Takayanagi Y, Takahashi T, Orikabe L, Masuda N, Mozue Y, Nakamura K, Kawasaki Y, Itokawa M, Sato Y, Yamasue H, Kasai K, Okazaki Y, Suzuki M (2010) Volume reduction and altered sulco-gyral pattern of the orbitofrontal cortex in first-episode schizophrenia. Schizophr Res 121:55–65

    Article  PubMed  Google Scholar 

  13. Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K (1995) The ontogeny of human gyrification. Cereb Cortex 5:56–63

    Article  CAS  PubMed  Google Scholar 

  14. Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86–93

    Article  CAS  PubMed  Google Scholar 

  15. Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372

    Article  PubMed  Google Scholar 

  16. Nguyen AD, Pelavin PE, Shenton ME, Chilakamarri P, McCarley RW, Nestor PG, Levitt JJ (2011) Olfactory sulcal depth and olfactory bulb volume in patients with schizophrenia: an MRI study. Brain Imaging Behav 5:252–261

    Article  PubMed  Google Scholar 

  17. Takahashi T, Nakamura Y, Nakamura K, Ikeda E, Furuichi A, Kido M, Kawasaki Y, Noguchi K, Seto H, Suzuki M (2013) Altered depth of the olfactory sulcus in first-episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 40:167–172

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi T, Nakamura Y, Nakamura K, Nishiyama S, Ikeda E, Furuichi A, Kido M, Noguchi K, Suzuki M (2013) Altered depth of the olfactory sulcus in subjects at risk of psychosis. Schizophr Res 149:186–187

    Article  PubMed  Google Scholar 

  19. Turetsky BI, Crutchley P, Walker J, Gur RE, Moberg PJ (2009) Depth of the olfactory sulcus: a marker of early embryonic disruption in schizophrenia? Schizophr Res 115:8–11

    Article  PubMed Central  PubMed  Google Scholar 

  20. World Health Organization (1993) The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. World Health Organization, Geneva

    Google Scholar 

  21. Kawasaki Y, Suzuki M, Nohara S, Hagino H, Matsui M, Yamashita I, Takahashi T, Chitnis X, McGuire PK, Seto H, Kurachi M (2004) Structural brain differences in patients with schizotypal disorder and schizophrenia demonstrated by voxel-based morphometry. Eur Arch Psychiatry Clin Neurosci 254:406–414

    Article  PubMed  Google Scholar 

  22. Suzuki M, Zhou SY, Hagino H, Takahashi T, Kawasaki Y, Nohara S, Yamashita I, Matsui M, Seto H, Kurachi M (2004) Volume reduction of the right anterior limb of the internal capsule in patients with schizotypal disorder. Psychiatry Res 130:213–225

    Article  PubMed  Google Scholar 

  23. Suzuki M, Zhou SY, Takahashi T, Hagino H, Kawasaki Y, Niu L, Matsui M, Seto H, Kurachi M (2005) Differential contributions of prefrontal and temporolimbic pathology to mechanisms of psychosis. Brain 128:2109–2122

    Article  PubMed  Google Scholar 

  24. Takahashi T, Suzuki M, Zhou SY, Tanino R, Hagino H, Kawasaki Y, Matsui M, Seto H, Kurachi M (2006) Morphologic alterations of the parcellated superior temporal gyrus in schizophrenia spectrum. Schizophr Res 83:131–143

    Article  PubMed  Google Scholar 

  25. Andreasen NC, Flaum M, Arndt S (1992) The Comprehensive Assessment of Symptoms and History (CASH): an instrument for assessing diagnosis and psychopathology. Arch Gen Psychiatry 49:615–623

    Article  CAS  PubMed  Google Scholar 

  26. Andreasen NC (1984) The scale for the assessment of negative symptoms (SANS). The University of Iowa, Iowa City

    Google Scholar 

  27. Andreasen NC (1984) The scale for the assessment of positive symptoms (SAPS). The University of Iowa, Iowa City

    Google Scholar 

  28. Takahashi T, Nakamura Y, Nakamura Y, Aleksic B, Takayanagi Y, Furuichi A, Kido M, Nakamura M, Sasabayashi D, Ikeda M, Noguchi K, Kaibuchi K, Iwata N, Ozaki N, Suzuki M (2014) The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and orbitofrontal sulcogyral pattern in patients with schizophrenia and healthy subjects. Prog Neuropsychopharmacol Biol Psychiatry 51:166–171

    Article  CAS  PubMed  Google Scholar 

  29. Zhou SY, Suzuki M, Hagino H, Takahashi T, Kawasaki Y, Nohara S, Yamashita I, Seto H, Kurachi M (2003) Decreased volume and increased asymmetry of the anterior limb of the internal capsule in patients with schizophrenia. Biol Psychiatry 54:427–436

    Article  PubMed  Google Scholar 

  30. Bartholomeusz CF, Whittle SL, Montague A, Ansell B, McGorry PD, Velakoulis D, Pantelis C, Wood SJ (2013) Sulcogyral patterns and morphological abnormalities of the orbitofrontal cortex in psychosis. Prog Neuropsychopharmacol Biol Psychiatry 44:168–177

    Article  PubMed  Google Scholar 

  31. Rombaux P, Grandin C, Duprez T (2009) How to measure olfactory bulb volume and olfactory sulcus depth? B-ENT 5(Suppl 13):53–60

    PubMed  Google Scholar 

  32. Lavoie S, Bartholomeuz CF, Nelson B, Lin A, McGorry PD, Velakoulis D, Whittle SL, Yung AR, Pantelis C, Wood SJ (2014) Sulcogyral pattern and sulcal count of the orbitofrontal cortex in individuals at ultra high risk for psychosis. Schizophr Res 154:93–99

    Article  PubMed  Google Scholar 

  33. Lener MS, Wong E, Tang CY, Byne W, Goldstein KE, Blair NJ, Haznedar MM, New AS, Chemerinski E, Chu KW, Rimsky LS, Siever LJ, Koenigsberg HW, Hazlett EA (2014) White matter abnormalities in schizophrenia and schizotypal personality disorder. Schizophr Bull. doi: 10.1093/schbul/sbu093 (in press)

  34. Pantelis C, Yücel M, Wood SJ, Velakoulis D, Sun D, Berger G, Stuart GW, Yung A, Phillips L, McGorry PD (2005) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 31:672–696

    Article  PubMed  Google Scholar 

  35. Takahashi T, Wood SJ, Yung AR, Nelson B, Lin A, Yücel M, Phillips LJ, Nakamura Y, Suzuki M, Brewer WJ, Proffitt TM, McGorry PD, Velakoulis D, Pantelis C (2014) Altered depth of the olfactory sulcus in ultra high-risk individuals and patients with psychotic disorders. Schizophr Res 153:18–24

    Article  PubMed  Google Scholar 

  36. Raine A, Lencz T, Yaralian P, Bihrle S, LaCasse L, Ventura J, Colletti P (2002) Prefrontal structural and functional deficits in schizotypal personality disorder. Schizophr Bull 28:501–513

    Article  PubMed  Google Scholar 

  37. Andreasen NC, Liu D, Ziebell S, Vora A, Ho BC (2013) Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatry 170:609–615

    Article  PubMed  Google Scholar 

  38. Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RS, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M, HGDH Study Group (2005) Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 62:361–370

    Article  CAS  PubMed  Google Scholar 

  39. Moncrieff J, Leo J (2010) A systematic review of the effects of antipsychotic drugs on brain volume. Psychol Med 40:1409–1422

    Article  CAS  PubMed  Google Scholar 

  40. Magnotta VA, Andreasen NC, Schultz SK, Harris G, Cizadlo T, Heckel D, Nopoulos P, Flaum M (1999) Quantitative in vivo measurement of gyrification in the human brain: changes associated with aging. Cereb Cortex 9:151–160

    Article  CAS  PubMed  Google Scholar 

  41. Pantelis C, Velakoulis D, Wood SJ, Yücel M, Yung AR, Phillips LJ, Sun DQ, McGorry PD (2007) Neuroimaging and emerging psychotic disorders: the Melbourne ultra-high risk studies. Int Rev Psychiatry 19:371–381

    Article  CAS  PubMed  Google Scholar 

  42. van Haren NE, Schnack HG, Cahn W, van den Heuvel MP, Lepage C, Collins L, Evans AC, Hulshoff Pol HE, Kahn RS (2011) Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry 68:871–880

    Article  PubMed  Google Scholar 

  43. Sun D, Stuart GW, Jenkinson M, Wood SJ, McGorry PD, Velakoulis D, van Erp TG, Thompson PM, Toga AW, Smith DJ, Cannon TD, Pantelis C (2009) Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry 14:976–986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205

    Article  CAS  PubMed  Google Scholar 

  45. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    Article  CAS  PubMed  Google Scholar 

  46. Watanabe H, Nakamura M, Ohno T, Itahashi T, Tanaka E, Ohta H, Yamada T, Kanai C, Iwanami A, Kato N, Hashimoto R (2014) Altered orbitofrontal sulcogyral patterns in adult males with high-functioning autism spectrum disorders. Soc Cogn Affect Neurosci 9:520–528

    Article  PubMed Central  PubMed  Google Scholar 

  47. Whittle S, Bartholomeusz C, Yücel M, Dennison M, Vijayakumar N, Allen NB (2014) Orbitofrontal sulcogyral patterns are related to temperamental risk for psychopathology. Soc Cogn Affect Neurosci 9:232–239

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Grants-in-Aid for Scientific Research (C) (Nos. 22591275, 24591699, 26461739) and Grants-in-Aid for Scientific Research (B) (No. 24390281) from the Japanese Society for the Promotion of Science, Health and Labour Sciences Research Grants (Comprehensive Research on Disability, Health and Welfare, H23-Seishin-Ippan-002 and H23-Seishin-Ippan-009), and Research Grants from the JSPS Asian Core Program and the Research Group For Schizophrenia, Japan. The authors would like to thank Prof. Hideki Origasa (Department of Biostatistics and Clinical Epidemiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences) for his support in statistical analyses. We would also like to thank the radiological technologists, especially Mr. Koichi Mori and Mr. Sadanori Ito, who assisted in the MRI data collection at Toyama University Hospital.

Conflict of interest

There are no conflicts of interest for any of the authors including any financial, personal, or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumiko Nishikawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

406_2015_587_MOESM1_ESM.pptx

Scatter plots for the olfactory sulcus depth, age, and intracranial volume (ICV) in each diagnostic group. Only the age among these variables was not normally distributed (Kolmogorov–Smirnov test, p < 0.001), but there was no quadratic (left, p = 0.34; right, p = 0.37) or cubic (left, p = 0.44; right, p = 0.50) correlation between age and sulcus depth (PPTX 469 kb)

Distribution of the orbitofrontal sulcogyral pattern in each diagnostic group. *p < 0.01, **p < 0.05 (PPTX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, Y., Takahashi, T., Takayanagi, Y. et al. Orbitofrontal sulcogyral pattern and olfactory sulcus depth in the schizophrenia spectrum. Eur Arch Psychiatry Clin Neurosci 266, 15–23 (2016). https://doi.org/10.1007/s00406-015-0587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-015-0587-z

Keywords

Navigation