Skip to main content

Advertisement

Log in

Antipsychotic treatment modulates glutamate transport and NMDA receptor expression

  • Review
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Schizophrenia patients often suffer from treatment-resistant cognitive and negative symptoms, both of which are influenced by glutamate neurotransmission. Innovative therapeutic strategies such as agonists at metabotropic glutamate receptors or glycin reuptake inhibitors try to modulate the brain’s glutamate network. Interactions of amino acids with monoamines have been described on several levels, and first- and second-generation antipsychotic agents (FGAs, SGAs) are known to exert modulatory effects on the glutamatergic system. This review summarizes the current knowledge on effects of FGAs and SGAs on glutamate transport and receptor expression derived from pharmacological studies. Such studies serve as a control for molecular findings in schizophrenia brain tissue and are clinically relevant. Moreover, they may validate animal models for psychosis, foster basic research on antipsychotic substances and finally lead to a better understanding of how monoaminergic and amino acid neurotransmissions are intertwined. In the light of these results, important differences dependent on antipsychotic substances, dosage and duration of treatment became obvious. While some post-mortem findings might be confounded with multifold drug effects, others are unlikely to be influenced by antipsychotic treatment and could represent important markers of schizophrenia pathophysiology. In similarity to the convergence of toxic and psychotomimetic effects of dopaminergic, serotonergic and anti-glutamatergic substances, the therapeutic mechanisms of SGAs might merge on a yet to be defined molecular level. In particular, serotonergic effects of SGAs, such as an agonism at 5HT1A receptors, represent important targets for further clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    PubMed  Google Scholar 

  2. Zink M, Englisch S, Meyer-Lindenberg A (2010) Polypharmacy in schizophrenia. Curr Opin Psychiatry 23:103–111

    PubMed  Google Scholar 

  3. Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF et al (2012) World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 2: update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects. World J Biol Psychiatry 14:2–44

    PubMed  Google Scholar 

  4. Sally H (2003) NICE guidelines address social aspect of schizophrenia. BMJ 326:679

    Google Scholar 

  5. Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM et al (2014) Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatr 75(5):e11–e13

    CAS  Google Scholar 

  6. Kantrowitz J, Javitt DC (2013) Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr Opin Psychiatry 25:96–102

    Google Scholar 

  7. Stan A, Lewis D (2012) Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies. Curr Pharm Biotechnol 13:1557–1562

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Hashimoto K, Malchow B, Falkai P, Schmitt A (2013) Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263:367–377

    PubMed  Google Scholar 

  9. Papanastasiou E, Stone JM, Shergill S (2013) When the drugs do not work: the potential of glutamatergic antipsychotics in schizophrenia. Br J Psychiatry 202:91–93

    PubMed  Google Scholar 

  10. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreeev BV et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    PubMed  CAS  Google Scholar 

  11. Stauffer VL, Millen BA, Andersen S, Kinon BJ, LaGrandeur L, Lindenmayer JP et al (2013) Pomaglumetad methionil: no significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophr Res 150:434–441

    PubMed  Google Scholar 

  12. Kinon BJ, Zhang L, Millen BA, Osuntokun OO, Williams JE, Kollack-Walker S et al (2011) A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharmacol 31:349–355

    PubMed  CAS  Google Scholar 

  13. Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM (2012) d-serine and schizophrenia: an update. Expert Rev Neurother 12:801–812

    PubMed  CAS  Google Scholar 

  14. Tsai GE, Lin PY (2010) Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16:522–537

    PubMed  CAS  Google Scholar 

  15. Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M (2012) Clozapine, but not haloperidol, enhances glial d-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br J Pharmacol 165:1543–1555

    PubMed  CAS  PubMed Central  Google Scholar 

  16. D’Souza DC, Singh N, Elander J, Carbuto M, Pittman B, de Haes JU et al (2012) Glycine transporter inhibitor attenuates the psychotomimetic effects of ketamine in healthy males: preliminary evidence. Neuropsychopharmacology 37:1036–1046

    PubMed  PubMed Central  Google Scholar 

  17. Patel DD, Laws KR, Padhi A, Farrow JM, Mukhopadhaya K, Krishnaiah R et al (2010) The neuropsychology of the schizo-obsessive subtype of schizophrenia: a new analysis. Psychol Med 40:921–933

    PubMed  CAS  Google Scholar 

  18. Stone JM, Morrison PD, Pilowsky LS (2007) Review: glutamate and dopamine dysregulation in schizophrenia a synthesis and selective review. J Psychopharmacol 21:440–452

    PubMed  CAS  Google Scholar 

  19. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68

    PubMed  CAS  Google Scholar 

  20. Tan HY, Chen Q, Sust S, Buckholtz JW, Meyers JD, Egan MF et al (2007) Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc Natl Acad Sci USA 104:12536–12541

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Gordon JA (2010) Testing the glutamate hypothesis of schizophrenia. Nat Neurosci 13:2–4

    PubMed  CAS  Google Scholar 

  22. Benes FM (2009) Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else? Biol Psychiatry 65:1003–1005

    PubMed  Google Scholar 

  23. Snigdha S, Horiguchi M, Huang M, Li Z, Shahid M, Neill JC et al (2010) Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 332:622–631

    PubMed  CAS  Google Scholar 

  24. Lopez-Gil X, Artigas F, Adell A (2010) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des 16:502–515

    PubMed  CAS  Google Scholar 

  25. Leucht S, Tardy M, Komossa K, Heres S, Kissling W, Salanti G et al (2012) Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: a systematic review and meta-analysis. Lancet 379:2063–2071

    PubMed  CAS  Google Scholar 

  26. Correll CU (2011) What are we looking for in new antipsychotics? J Clin Psychiatry 72:9–13

    PubMed  CAS  Google Scholar 

  27. Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA (2012) Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 17:1206–1227

    PubMed  CAS  Google Scholar 

  28. Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868

    PubMed  CAS  Google Scholar 

  29. Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D et al (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19:4449–4461

    PubMed  CAS  Google Scholar 

  30. Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the Neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 45:250–265

    PubMed  CAS  Google Scholar 

  32. Nemeroff CB, Vale WW (2005) The neurobiology of depression: inroads to treatment and new drug discovery. J Clin Psychiatry 66:5–13

    PubMed  CAS  Google Scholar 

  33. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98–103

    PubMed  CAS  Google Scholar 

  34. Corlew R, Brasier DJ, Feldman DE, Philpot BD (2008) Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity. Neuroscientist 14:609–625

    PubMed  PubMed Central  Google Scholar 

  35. Chavez-Noriega LE, Schaffhauser H, Campbell UC (2002) Metabotropic glutamate receptors: potential drug targets for the treatment of schizophrenia. Curr Drug Targets CNS Neurol Disord 1:261–281

    PubMed  CAS  Google Scholar 

  36. Matosin N, Newell KA (2013) Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev 37:256–268

    PubMed  CAS  Google Scholar 

  37. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47

    PubMed  CAS  Google Scholar 

  38. Zhou Q, Sheng M (2013) NMDA receptors in nervous system diseases. Neuropharmacology 74:69–75

    PubMed  CAS  Google Scholar 

  39. Lin CH, Lane HY, Tsai GE (2012) Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 100:665–677

    PubMed  CAS  Google Scholar 

  40. Pirotte B, Francotte P, Goffin E, de Tullio P (2013) AMPA receptor positive allosteric modulators: a patent review. Expert Opin Ther Pat 23:615–628

    PubMed  CAS  Google Scholar 

  41. Lerma J, Marques J (2013) Kainate receptors in health and disease. Neuron 80:292–311

    PubMed  CAS  Google Scholar 

  42. Gielen M, Retchless BS, Mony L, Johnson JW, Paoletti P (2009) Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459:703–707

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69(2):164–170

    PubMed  CAS  Google Scholar 

  44. Seal RP, Daniels GM, Wolfgang WJ, Forte MA, Amara SG (1998) Identification and characterization of a cDNA encoding a neuronal glutamate transporter from Drosophila melanogaster. Receptors Channels 6:51–64

    PubMed  CAS  Google Scholar 

  45. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    PubMed  CAS  Google Scholar 

  46. Torp R, Danbolt NC, Babaie E, Bjoras M, Seeberg E, Storm-Mathisen J et al (1994) Differential expression of two glial glutamate transporters in the rat brain: an in situ hybridization study. Eur J Neurosci 6:936–942

    PubMed  CAS  Google Scholar 

  47. Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. [Review] [119 refs]. J Neurosci Res 63:453–460

    PubMed  CAS  Google Scholar 

  48. Javitt DC (2012) Twenty-five years of glutamate in schizophrenia: Are we there yet? Schizophr Bull 38:911–913

    PubMed  PubMed Central  Google Scholar 

  49. Paz RD, Tardito S, Atzori M, Tseng KY (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 18:773–786

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. [Review] [95 refs]. Nat Rev Neurosci 7:818–827

    PubMed  CAS  Google Scholar 

  51. Deng X, Shibata H, Takeuchi N, Rachi S, Sakai M, Ninomiya H et al (2007) Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 144B(3):271–278

    CAS  Google Scholar 

  52. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543

    PubMed  CAS  Google Scholar 

  53. Harrison PJ, Law AJ, Eastwood SL (2003) Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann NY Acad Sci 1003:94–101

    PubMed  CAS  Google Scholar 

  54. Potvin S, Stip E, Roy J-Y (2005) Toxic psychoses as pharmacological models of schizophrenia. Curr Psychiatry Rev 1:23–32

    Google Scholar 

  55. Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. [Review] [31 refs]. Ann NY Acad Sci 1003:131–137

    PubMed  CAS  Google Scholar 

  56. Zink M (2007) Plasticity of brain development as a perspective of basic science in psychiatry. Shak Verl. doi:10.2370/210_194

    Google Scholar 

  57. Readler TJ, Knable MB, Weinberger DR (1998) Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 8:157–161

    Google Scholar 

  58. Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326

    PubMed  CAS  Google Scholar 

  59. Jakob H, Beckmann H (1989) Gross and histological criteria for developmental disorders in brains of schizophrenics. J R Soc Med 82:466–469

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261:150–154

    PubMed Central  Google Scholar 

  61. Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319

    PubMed  PubMed Central  Google Scholar 

  62. Insel TR (2010) Rethinking schizophrenia. Nature 468:187–193

    PubMed  CAS  Google Scholar 

  63. Schmitt A, Falkai P (2013) Therapeutic targets in major psychiatric disorders revisited. Eur Arch Psychiatry Clin Neurosci 263:619–620

    PubMed  Google Scholar 

  64. Meltzer HY (1994) An overview of the mechanism of action of clozapine. J Clin Psychiatr 55(Suppl B):47–52

    Google Scholar 

  65. Meltzer HY (2012) Clozapine. Clin Schizophr Relat Psychoses 6:134–144

    PubMed  Google Scholar 

  66. Essali A, Al-Haj HN, Li C, Rathbone J (2009) Clozapine versus typical neuroleptic medication for schizophrenia. Cochrane Database Syst Rev. doi:10.1002/14651858.CD000059.pub2

    PubMed  Google Scholar 

  67. Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P, Inta D et al (2010) Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci Biobehav Rev 34:285–294

    PubMed  CAS  Google Scholar 

  68. Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. [Miscellaneous Article]. Curr Opin Neurol 22:331–339

    PubMed  Google Scholar 

  69. Bickel S, Javitt DC (2009) Neurophysiological and neurochemical animal models of schizophrenia: focus on glutamate. Behav Brain Res 204:352–362

    PubMed  CAS  Google Scholar 

  70. Pietraszek M, Golembiowska K, Bijak M, Ossowaka K, Wolfarth S (2002) Differential effects of chronic haloperidol and clozapine administration on glutamatergic transmission in the fronto-parietal cortex in rats: microdialysis and electrophysiological studies. Naunyn Schmiedeberg’s Arch Pharmacol 366:417–424

    CAS  Google Scholar 

  71. Sokoloff P, Leriche L, Diaz J, Louvel J, Pumain R (2014) Direct and indirect interactions of the dopamine D3 receptor with glutamate pathways: implications for the treatment of schizophrenia. Naunyn Schmiedeberg’s Arch Pharmacol 386:107–124

    Google Scholar 

  72. Choi YK, Snigdha S, Shahid M, Neill JC, Tarazi FI (2009) Subchronic effects of phencyclidine on dopamine and serotonin receptors: implications for schizophrenia. J Mol Neurosci 38:227–235

    PubMed  CAS  Google Scholar 

  73. McLean SL, Idris NF, Woolley ML, Neill JC (2009) D1-like receptor activation improves PCP-induced cognitive deficits in animal models: implications for mechanisms of improved cognitive function in schizophrenia. Eur Neuropsychopharmacol 19:440–450

    PubMed  CAS  Google Scholar 

  74. Snigdha S, Neill JC (2008) Improvement of phencyclidine-induced social behaviour deficits in rats: involvement of 5-HT1A receptors. Behav Brain Res 191:26–31

    PubMed  CAS  Google Scholar 

  75. Fuente-Sandoval C, León-Ortiz P, Azcárraga M (2013) Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiatry 70:1057–1066

    PubMed  PubMed Central  Google Scholar 

  76. Eastwood SL, Harrison PJ (2005) Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 73:159–172

    PubMed  CAS  Google Scholar 

  77. Oni-Orisan A, Kristiansen LV, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2008) Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia. Biol Psychiatry 63:766–775

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Nudmamud-Thanoi S, Piyabhan P, Harte MK, Cahir M, Reynolds GP (2007) Deficits of neuronal glutamatergic markers in the caudate nucleus in schizophrenia. J Neural Transm 72(Suppl):281–285

  79. Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399

    PubMed  CAS  Google Scholar 

  80. Matute C, Melone M, Vallejo-Illarramendi A, Conti F (2005) Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49:451–455

    PubMed  Google Scholar 

  81. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC (1998) Expression of the human excitatory amino acid transporter 2 and matabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Mol Brain Res 56:207–217

    PubMed  CAS  Google Scholar 

  82. Ohnuma T, Tessler S, Arai H, Faull RL, McKenna PJ, Emson PC (2000) Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Mol Brain Res 85:24–31

    PubMed  CAS  Google Scholar 

  83. Shan D, Lucas EK, Drummond JB, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2013) Abnormal expression of glutamate transporters in temporal lobe areas in elderly patients with schizophrenia. Schizophr Res 144:1–8

    PubMed  PubMed Central  Google Scholar 

  84. McCullumsmith RE, Meador-Woodruff JH (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depression. Neuropsychopharmacology 26:368–375

    PubMed  CAS  Google Scholar 

  85. Simpson MD, Slater P, Deakin JF (1998) Comparison of glutamate and gamma-aminobutyric acid uptake binding sites in frontal and temporal lobes in schizophrenia. Biol Psychiatry 44:423–427

    PubMed  CAS  Google Scholar 

  86. Deakin JF, Slater P, Simpson MD, Gilchrist AC, Skan WJ, Royston MC et al (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 52:1781–1786

    PubMed  CAS  Google Scholar 

  87. Simpson MD, Slater P, Royston MC, Deakin JF (1992) Regionally selective deficits in uptake sites for glutamate and gamma-aminobutyric acid in the basal ganglia in schizophrenia. Psychiatry Res 42:273–282

    PubMed  CAS  Google Scholar 

  88. Aparicio-Legarza MI, Cutts AJ, Davis B, Reynolds GP (1997) Deficits of [3H]D-aspartate binding to glutamate uptake sites in striatal and accumbens tissue in patients with schizophrenia. Neurosci Lett 232:13–16

    PubMed  CAS  Google Scholar 

  89. Balcar VJ, Nanitsos EK (2006) Autoradiography of [3H]aspartate and glutamate transport in schizophrenia.[comment]. Neuropsychopharmacology 31:685–686

    PubMed  CAS  Google Scholar 

  90. Lauriat TL, Dracheva S, Chin B, Schmeidler J, McInnes LA, Haroutunian V (2006) Quantitative analysis of glutamate transporter mRNA expression in prefrontal and primary visual cortex in normal and schizophrenic brain. Neuroscience 137:843–851

    PubMed  CAS  Google Scholar 

  91. Moutsimilli L, Farley S, Dumas S, Mestikawy SE, Giros B, Tzavara ET (2005) Selective cortical VGLUT1 increase as a marker for antidepressant activity. Neuropharmacology 49:890–900

    PubMed  CAS  Google Scholar 

  92. Bragina L, Melone M, Fattorini G, Torres-Ramos M, Vallejo-Illarramendi A, Matute C et al (2006) GLT-1 down-regulation induced by clozapine in rat frontal cortex is associated with synaptophysin up-regulation. J Neurochem 99:134–141

    PubMed  CAS  Google Scholar 

  93. Moutsimilli L, Farley S, El Khoury MA, Chamot C, Sibarita JB, Racine V et al (2008) Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways. Neuropharmacology 54:497–508

    PubMed  CAS  Google Scholar 

  94. Vallejo-Illarramendi A, Torres-Ramos M, Melone M, Conti F, Matute C (2005) Clozapine reduces GLT-1 expression and glutamate uptake in astrocyte cultures. Glia 50:276–279

    PubMed  Google Scholar 

  95. Schneider JS, Wade T, Lidsky TI (1998) Chronic neuroleptic treatment alters expression of glial glutamate transporter GLT-1 mRNA in the striatum. NeuroReport 9:133–136

    PubMed  CAS  Google Scholar 

  96. De Souza I, McBean GJ, Meredith GE (1999) Chronic haloperidol treatment impairs glutamate transport in the rat striatum. Eur J Pharmacol 382:139–142

    PubMed  Google Scholar 

  97. Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Perez-Samartin A, Matute C, Cozzi A et al (2001) The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Mol Psychiatry 6:380–386

    PubMed  CAS  Google Scholar 

  98. Melone M, Bragina L, Conti F, Melone M, Bragina L, Conti F (2003) Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry 8:12–13

    PubMed  CAS  Google Scholar 

  99. Schmitt A, Zink M, Mueller B, May B, Herb A, Jatzko A et al (2003) Effects of long-term antipsychotic treatment on NMDA receptor binding and gene expression of subunits. Neurochem Res 28:235–241

    PubMed  CAS  Google Scholar 

  100. Schmitt A, Zink M, Petroianu G, May B, Braus DF, Henn FA (2003) Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain. Neurosci Lett 347:81–84

    PubMed  CAS  Google Scholar 

  101. Zink M, Schmitt A, May B, Müller B, Braus DF, Henn FA (2004) Differential effects of long-term treatment with clozapine or haloperidol on GABA-transporter expression. Pharmacopsychiatry 37:171–174

    PubMed  CAS  Google Scholar 

  102. Zink M, Schmitt A, May B, Müller B, Demirakca T, Braus DF et al (2004) Differential effects of long-term treatment with clozapine of haloperidol on GABAa receptor binding and GAD67 expression. Schizophr Res 66:151–157

    PubMed  Google Scholar 

  103. Yamamura S, Ohoyama K, Hamaguchi T, Kashimoto K, Nakagawa M, Kanehara S et al (2009) Effects of quetiapine on monoamine, GABA, and glutamate release in rat prefrontal cortex. Psychopharmacology 206:243–258

    PubMed  CAS  Google Scholar 

  104. Yamamura S, Ohoyama K, Hamaguchi T, Nakagawa M, Suzuki D, Matsumoto T et al (2009) Effects of zotepine on extracellular levels of monoamine, GABA and glutamate in rat prefrontal cortex. Br J Pharmacol 157:656–665

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Lopez-Gil X, Babot Z, margos-Bosch M, Sunol C, Artigas F, Adell A (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32:2087–2097

    PubMed  CAS  Google Scholar 

  106. Abekawa T, Ito K, Koyoma T (2007) Different effects of a single and repeated administration of clozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the rat medial prefrontal cortex at short- and long-term withdrawal from this antipsychotic. Naunyn Schmiedeberg’s Arch Pharmacol 375:261–271

    CAS  Google Scholar 

  107. Ohoyama K, Yamamura S, Hamaguchi T, Nakagawa M, Motomura E, Shiroyama T et al (2011) Effect of novel atypical antipsychotic, blonanserin, on extracellular neurotransmitter level in rat prefrontal cortex. Eur J Pharmacol 653:47–57

    PubMed  CAS  Google Scholar 

  108. Huang M, Panos JJ, Kwon S, Oyamada Y, Rajagopal L, Meltzer HY (2013) Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. J Neurochem. doi:10.1111/jnc.12512

    PubMed Central  Google Scholar 

  109. Carli M, Calcagni E, Mainolfi P, Mainini E, Invernizzi RW (2011) Effects of aripiprazole, olanzapine, and haloperidol in a model of cognitive deficit of schizophrenia in rats: relationship with glutamate release in the medial prefrontal cortex. Psychopharmacology 214:639–652

    PubMed  CAS  Google Scholar 

  110. Carli M, Calcagno E, Mainini E, Arnt J, Invernizzi R (2011) Sertindole restores attentional performance and suppresses glutamate release induced by the NMDA receptor antagonist CPP. Psychopharmacology 214:625–637

    PubMed  CAS  Google Scholar 

  111. Roenker NL, Gudelsky G, Ahlbrand R, Bronson SL, Kern JR, Waterman H et al (2011) Effect of paliperidone and risperidone on extracellular glutamate in the prefrontal cortex of rats exposed to prenatal immune activation or MK-801. Neurosci Lett 500:167–171

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR et al (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411

    PubMed  CAS  Google Scholar 

  113. Bowles TM, Levin GM (2003) Aripiprazole: a new atypical antipsychotic drug. Ann Pharmacother 37:687–694

    PubMed  CAS  Google Scholar 

  114. Bortolozzi A, az-Mataix L, Toth M, Celada P, Artigas F F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacology 191:745–758

    PubMed  CAS  Google Scholar 

  115. Jordan S, Koprivica V, Dunn R, Tottori K, Kikuchi T, Altar CA (2004) In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 483:45–53

    PubMed  CAS  Google Scholar 

  116. Kane JM, Carson WH, Saha AR, McQuade RD, Ingenito GG, Zimbroff DL et al (2002) Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry 63:763–771

    PubMed  CAS  Google Scholar 

  117. El-Sayeh HG, Morganti C, Adams CE (2006) Aripiprazole for schizophrenia. Br J Psychiatry 189:102–108

    PubMed  CAS  Google Scholar 

  118. Tran-Johnson TK, Sack DA, Marcus RN, Auby P, McQuade RD, Oren DA (2007) Efficacy and safety of intramuscular aripiprazole in patients with acute agitation: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 68:111–119

    PubMed  CAS  Google Scholar 

  119. Kern RS, Green MF, Cornblatt BA, Owen JR, McQuade RD, Carson WH et al (2006) The neurocognitive effects of aripiprazole: an open-label comparison with olanzapine. Psychopharmacology 187:312–320

    PubMed  CAS  Google Scholar 

  120. Hamamura T, Harada T (2007) Unique pharmacological profile of aripiprazole as the phasic component buster.[erratum appears in Psychopharmacology (Berl). 2007 Apr; 191(3):855]. [Review] [17 refs]. Psychopharmacology 191:741–743

    PubMed  CAS  Google Scholar 

  121. Han M, Huang XF, Deng C (2009) Aripiprazole differentially affects mesolimbic and nigrostriatal dopaminergic transmission: implications for long-term drug efficacy and low extrapyramidal side-effects. Int J Neuropsychopharmacol. doi:10.1017/S1461145709009948

    Google Scholar 

  122. Cheng MC, Liao D-L, Hsiung C-A, Chen C-Y, Liao Y-C, Chen C-H (2008) Chronic treatment with aripiprazole induces differential gene expression in the rat frontal cortex. Int J Neuropsychopharmacol 11:207–216

    PubMed  CAS  Google Scholar 

  123. Yang TT, Wang SJ (2008) Aripiprazole and its human metabolite OPC14857 reduce, through a presynaptic mechanism, glutamate release in rat prefrontal cortex: possible relevance to neuroprotective interventions in schizophrenia. Synapse 62:804–818

    PubMed  CAS  Google Scholar 

  124. Segnitz N, Schmitt A, Gebicke-Härter P, Zink M (2009) Differential expression of glutamate transporter genes after chronic oral treatment with aripiprazole in rats. Neurochem Int 55:619–628

    PubMed  CAS  Google Scholar 

  125. Zink M, Rapp S, Donev R, Gebicke-Härter P, Thome J (2011) Fluoxetine-treatment induces the expression of EAAT2 in rat brain. J Neural Transm 118:849–855

    PubMed  CAS  Google Scholar 

  126. Zink M, Vollmayr B, Gebicke-Härter P, Henn FA (2010) Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 58:465–473

    PubMed  CAS  Google Scholar 

  127. Coyle JT (2012) NMDA receptor and schizophrenia: a brief history. Schizophr Bull 38:920–926

    PubMed  PubMed Central  Google Scholar 

  128. Ibrahim HM, Hogg AJ Jr, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. [See comment]. Am J Psychiatry 157:1811–1823

    PubMed  CAS  Google Scholar 

  129. Vrajova M, Stastny F, Horacek J, Lochman L, Sery O, Pekova S et al (2010) Expression of the hippocampal NMDA receptor GluN1 subunit and its splicing isoforms in schizophrenia: postmortem study. Neurochem Res 35:994–1002

    PubMed  CAS  Google Scholar 

  130. Funk AJ, Rumbaugh G, Harotunian V, McCullumsmith RE, Meador-Woodruff JH (2009) Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. NeuroReport 20:1019–1022

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Bitanihirwe BK, Lim MP, Kelley JF, Kaneko T, Woo TU (2009) Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry 9:71

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Morris BJ, Cochran SM, Pratt JA (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106

    PubMed  CAS  Google Scholar 

  133. Turiumi K, Mouri A, Narasawa S, Aoyama Y, Ikawa N, Lu J et al (2012) Prenatal NMDA receptor antagonism impaired proliferation of neuronal progenitor, leading to fewer glutamatergic neurons in the prefrontal cortex. Neuropsychopharmacology 37:1387–1396

    Google Scholar 

  134. MacDonald AW III, Chafee MV (2006) Translational and developmental perspective on N-methyl-D-aspartate synaptic deficits in schizophrenia. Dev Psychopathol 18:853–876

    PubMed  Google Scholar 

  135. Wang HX, Gao WJ (2009) Cell type-specific development of NMDA receptors in the interneurons of rat prefrontal cortex. Neuropsychopharmacology 34:2028–2040

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Fujimura M, Hashimoto K, Yamagami K (2000) Effects of antipsychotic drugs on neurotoxicity, expression of fos-like protein and c-fos mRNA in the retrosplenial cortex after administration of dizocilpine. Eur J Pharmacol 398:1–10

    PubMed  CAS  Google Scholar 

  137. Hashimoto K, Fujita Y, Shimuzu E, Iyo M (2005) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur J Pharmacol 519:114–117

    PubMed  CAS  Google Scholar 

  138. Braun I, Genius J, Grunze H, Bender A, Möller HJ, Rujescu D (2007) Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism. Schizophr Res 97:254–263

    PubMed  Google Scholar 

  139. Rujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H et al (2006) A pharmacological model for psychosis based on N-methyl-D-aspartate receptor hypofunction: molecular, cellular, functional and behavioral abnormalities. Biol Psychiatry 59:721–729

    PubMed  CAS  Google Scholar 

  140. Romon T, Mengod G, Adell A (2011) Expression of parvalbumin and glutamic acid decarboxylase-67 after acute administration of MK-801. Implications for the NMDA hypofunction model of schizophrenia. Psychopharmacology 217:231–238

    PubMed  CAS  Google Scholar 

  141. Guo C, Yang Y, Su Y, Si T (2010) Postnatal BDNF expression profiles in prefrontal cortex and hippocampus of a rat schizophrenia model induced by MK-801 administration. J Biomed Biotechnol 2010:783297

    PubMed  PubMed Central  Google Scholar 

  142. Fattorini G, Melone M, Bragina L, Candiracci C, Cozzi A, Pellegrini Giampietro DE et al (2008) GLT-1 expression and Glu uptake in rat cerebral cortex are increased by phencyclidine. Glia 56:1320–1327

    PubMed  Google Scholar 

  143. Jenkins TA, Harte MK, Reynolds GP (2010) Effect of subchronic phencyclidine administration on sucrose preference and hippocampal parvalbumin immunoreactivity in the rat. Neurosci Lett 471:144–147

    PubMed  CAS  Google Scholar 

  144. du Bois TM, Deng C, Han M, Newell KA, Huang XF (2009) Excitatory and inhibitory neurotransmission is chronically altered following perinatal NMDA receptor blockade. Eur Neuropsychopharmacol 19:256–265

    PubMed  Google Scholar 

  145. Baier PC, Blume A, Koch J, Marx A, Fritzer G, Aldenhoff JB et al (2009) Early postnatal depletion of NMDA receptor development affects behaviour and NMDA receptor expression until later adulthood in rats—a possible model for schizophrenia. Behav Brain Res 205:96–101

    PubMed  CAS  Google Scholar 

  146. Seillier A, Giuffrida A (2009) Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav Brain Res 204:410–415

    PubMed  CAS  Google Scholar 

  147. Gilmour G, Pioli EY, Dix SL, Smith JW, Conway MW, Jones WT et al (2009) Diverse and often opposite behavioural effects of NMDA receptor antagonists in rats: implications for “NMDA antagonist modelling” of schizophrenia. Psychopharmacology 205:203–216

    PubMed  CAS  Google Scholar 

  148. Duncan GE, Inada K, Farrington JS, Koller BH, Moy SS (2009) Neural activation deficits in a mouse genetic model of NMDA receptor hypofunction in tests of social aggression and swim stress. Brain Res 1265:186–195

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Dahan L, Husum H, Mnie-Filali O, Arnt J, Hertel P, Haddjeri N (2009) Effects of bifeprunox and aripiprazole on rat serotonin and dopamine neuronal activity and anxiolytic behaviour. J Psychopharmacol 23:177–189

    PubMed  CAS  Google Scholar 

  151. Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15:2453–2461

    PubMed  CAS  Google Scholar 

  152. Segnitz N, Ferbert T, Schmitt A, Gass P, Gebicke-Härter P, Zink M (2011) Effects of chronic oral treatment with aripiprazole on the expression of NMDA receptor subunits and binding sites in rat brain. Psychopharmacology 217:127–142

    PubMed  CAS  Google Scholar 

  153. Ulas J, Nguyen L, Cotman CW (1993) Chronic haloperidol treatment enhances binding to NMDA receptors in rat cortex. NeuroReport 4:1049–1051

    PubMed  CAS  Google Scholar 

  154. Choi YK, Gardner MP, Tarazi FI (2009) Effects of risperidone on glutamate receptor subtypes in developing rat brain. Eur Neuropsychopharmacol 19:77–84

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Tarazi FI, Choi YK, Gardner M, Wong EH, Henry B, Shahid M (2009) Asenapine exerts distinctive regional effects on ionotropic glutamate receptor subtypes in rat brain. Synapse 63:413–420

    PubMed  CAS  Google Scholar 

  156. Kargieman L, Santana N, Mengod G, Celada P, Artigas F (2007) Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proc Natl Acad Sci USA 104:14843–14848

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Homayoun H, Moghaddam B (2008) Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs. Proc Natl Acad Sci USA 105:18041–18046

    PubMed  CAS  PubMed Central  Google Scholar 

  158. Giegling I, Drago A, Dolžan V, Plesnicar BK, Schäfer M, Hartmann AM et al (2011) Glutamatergic gene variants impact the clinical profile of efficacy and side effects of haloperidol. Pharm Genomics 21(4):206–216

  159. Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83

    PubMed  CAS  Google Scholar 

  160. Lieberman JA (2004) Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 18:251–267

    PubMed  CAS  Google Scholar 

  161. Sparshatt A, Taylor D, Patel MX, Kapur S (2010) A systematic review of aripiprazole–dose, plasma concentration, receptor occupancy, and response: implications for therapeutic drug monitoring. J Clin Psychiatry 71:1447–1456

    PubMed  CAS  Google Scholar 

  162. Peselmann N, Schmitt A, Gebicke-Haerter P, Zink M (2012) Aripiprazole differentially regulates the expression of Gad67 and ã-amino-butyric acid transporters in rat brain. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-012-0367-y

    PubMed  Google Scholar 

  163. Daskalakis ZJ, George TP (2009) Clozapine, GABA(B), and the treatment of resistant schizophrenia. Clin Pharmacol Ther 86:442–446

    PubMed  CAS  Google Scholar 

  164. Bruins Slot LA, Kleven MS, Newman-Tancredi A (2005) Effects of novel antipsychotics with mixed D(2) antagonist/5-HT(1A) agonist properties on PCP-induced social interaction deficits in the rat. Neuropharmacology 49:996–1006

    PubMed  CAS  Google Scholar 

  165. Nagai T, Murai R, Matsui K, Kamei H, Noda Y, Furukawa H et al (2009) Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology 202:315–328

    PubMed  CAS  Google Scholar 

  166. Lopez-Gil X, Artigas F, Adell A (2009) Role of different monoamine receptors controlling MK-801-induced release of serotonin and glutamate in the medial prefrontal cortex: relevance for antipsychotic action. Int J Neuropsychopharmacol 12:487–499

    PubMed  CAS  Google Scholar 

  167. Ishima T, Iyo M, Hashimoto K (2012) Neurite outgrowth mediated by the heat shock protein Hsp90a: a novel target for the antipsychotic drug aripiprazole. Transl Psychiatry 2:e170. doi:10.1038/tp.2012.97

    PubMed  CAS  PubMed Central  Google Scholar 

  168. Cosi C, Waget A, Rollet K, Tesori V, Newman-Tancredi A (2005) Clozapine, ziprasidone and aripiprazole but not haloperidol protect against kainic acid-induced lesion of the striatum in mice, in vivo: role of 5-HT1A receptor activation. Brain Res 1043:32–41

    PubMed  CAS  Google Scholar 

  169. Bontron S, Steimle V (1997) Efficient repression of endogenous major histocompatibility complex class II expression through dominant negative CIITA mutants isolated by a functional selection strategy. Mol Cell Biol 17:4249–4258

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Varmeh-Ziaie S, Wimann KG (1997) Wig-1, a new p53-induced gene encoding a zinc finger protein. Oncogene 15:2699–2704

    PubMed  CAS  Google Scholar 

  171. Hollister RD, Xia M, McNamara MJ, Hyman BT (1997) Neuronal expression of class II major histocompatibility complex (HLA-DR) in 2 cases of pick disease. Arch Neurol 54:243–248

    PubMed  CAS  Google Scholar 

  172. Leite JV, Guimaraes FS, Moreira FA (2008) Aripiprazole, an atypical antipsychotic, prevents the motor hyperactivity induced by psychotomimetics and psychostimulants in mice. Eur J Pharmacol 578:222–227

    PubMed  CAS  Google Scholar 

  173. Nordquist RE, Risterucci C, Moreau JL, von Kienlin KM, Kunnecke B, Maco M et al (2008) Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats. Neuropharmacology 54:405–416

    PubMed  CAS  Google Scholar 

  174. Wieronska JM, Slawinska A, Stachowicz K, Lason-Tyburkiewicz M, Gruca P, Papp M et al (2013) The reversal of cognitive, but not negative or positive symptoms of schizophrenia, by the mGlu2/3 receptor agonist, LY379268, is 5-HT1A dependent. Behav Brain Res 256:298–304

    PubMed  CAS  Google Scholar 

  175. Sumiyoshi T, Higuchi Y, Uehara T (2013) Neural basis for the ability of atypical antipsychotic drugs to improve cognition in schizophrenia. Front Behav Neurosci 7. doi:10.3389/fnbeh.2013.00140

  176. Sumiyoshi T, Higuchi Y (2013) Facilitative effect of serotonin(1A) receptor agonists on cognition in patients with schizophrenia. Curr Med Chem 20:357–362

    PubMed  CAS  Google Scholar 

  177. de Almeida J, Mengod G (2008) Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochem 107:488–496

    PubMed  Google Scholar 

  178. Llado-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P (2012) 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex 22:1487–1497

    PubMed  Google Scholar 

  179. Meltzer HY, Sumiyoshi T (2008) Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res 195:98–102

    PubMed  CAS  Google Scholar 

  180. Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11:59–67

    PubMed  CAS  Google Scholar 

  181. Wirkner K, Krause T, Koles L, Thummler S, Al-Khrasani M, Illes P (2004) D1 but not D2 dopamine receptors or adrenoceptors mediate dopamine-induced potentiation of N-methyl-d-aspartate currents in the rat prefrontal cortex. Neurosci Lett 372:89–93

    PubMed  CAS  Google Scholar 

  182. Lei G, Anastasio NC, Fu Y, Neugebauer V, Johnson KM (2009) Activation of dopamine D1 receptors blocks phencyclidine-induced neurotoxicity by enhancing N-methyl-D-aspartate receptor-mediated synaptic strength. J Neurochem 109:1017–1030

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Kuo F, Gillespie TA, Kulanthaivel P, Lantz RJ, Ma TW, Nelson DL et al (2004) Synthesis and biological activity of some known and putative duloxetine metabolites.[erratum appears in Bioorg Med Chem Lett. 2004 Oct 18;14(20):5233]. Bioorg Med Chem Lett 14:3481–3486

    PubMed  CAS  Google Scholar 

  184. Svenningsson P, Nairn AC, Greengard P (2005) DARPP-32 mediates the actions of multiple drugs of abuse. [Review] [76 refs]. AAPS J 7:E353–E360

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Konradi C, Cole RL, Heckers S, Hyman SE (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci 14:5623–5634

    PubMed  CAS  Google Scholar 

  186. Meyer-Lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH et al (2007) Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. J Clin Investig 117:672–682

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Bartolomeis A, Tomasetti C (2012) Calcium-dependent networks in dopamine-glutamate interaction: the role of postsynaptic scaffolding proteins. Mol Neurobiol 46:275–296

    PubMed  CAS  Google Scholar 

  188. de Bartolomeis A, Sarappa C, Buonaguro EF, Marmo F, Eramo A, Tomasetti C et al (2013) Different effects of the NMDA receptor antagonists ketamine, MK-801, and memantine on postsynaptic density transcripts and their topography: role of homer signaling, and implications for novel antipsychotic and pro-cognitive targets in psychosis. Prog Neuropsychopharmacol Biol Psychiatry 46:1–12

    PubMed  Google Scholar 

  189. Rolls ET, Loh M, Deco G, Winterer G (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9:696–709

    PubMed  CAS  Google Scholar 

  190. Bartolomeis A, Buonaguro EF, Iasevoli F (2013) Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacology 225:1–19

    PubMed  Google Scholar 

  191. Schmitt A, Koschel J, Zink M, Bauer M, Sommer C, Frank J et al (2010) Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 260:101–111

    PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

M. Zink has received unrestricted scientific grants of ERAB (European Research Advisory Board), German Research Foundation (DFG), Servier, Pfizer Pharma GmbH, Bristol-Myers Squibb GmbH & CoKGaA, further speaker and travel support from Pfizer Pharma GmbH, Bristol-Myers Squibb, Otsuka, Astra Zeneca, Eli-Lilly, Janssen Cilag, Servier, Trommsdorff and Roche. S. Englisch has received travel expenses and consultant fees from AstraZeneca, Bristol-Myers Squibb GmbH & CoKGaA, Eli-Lilly, Janssen Cilag, Pfizer Pharma, Roche Pharma and Servier. A. Schmitt was honorary speaker for TAD Pharma and Roche and has been member of the Roche advisory board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Zink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zink, M., Englisch, S. & Schmitt, A. Antipsychotic treatment modulates glutamate transport and NMDA receptor expression. Eur Arch Psychiatry Clin Neurosci 264 (Suppl 1), 67–82 (2014). https://doi.org/10.1007/s00406-014-0534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-014-0534-4

Keywords

Navigation