Skip to main content

Advertisement

Log in

Brain volumes differ between diagnostic groups of violent criminal offenders

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Studies on structural abnormalities in antisocial individuals have reported inconsistent results, possibly due to inhomogeneous samples, calling for an investigation of brain alterations in psychopathologically stratified subgroups. We explored structural differences between antisocial offenders with either borderline personality disorder (ASPD-BPD) or high psychopathic traits (ASPD-PP) and healthy controls (CON) using region-of-interest-based and voxel-based morphometry approaches. Besides common distinct clusters of reduced gray matter volumes within the frontal pole and occipital cortex, there was remarkably little overlap in the regional distribution of brain abnormalities in ASPD-BPD and ASPD-PP, when compared to CON. Specific alterations of ASPD-BPD were detected in orbitofrontal and ventromedial prefrontal cortex regions subserving emotion regulation and reactive aggression and the temporal pole, which is involved in the interpretation of other peoples’ motives. Volumetric reductions in ASPD-PP were most significant in midline cortical areas involved in the processing of self-referential information and self-reflection (i.e., dorsomedial prefrontal cortex, posterior cingulate/precuneus) and recognizing emotions of others (postcentral gyrus) and could reflect neural correlates of the psychopathic core features of callousness and poor moral judgment. The findings of this first exploratory study therefore may reflect correlates of prominent psychopathological differences between the two criminal offender groups, which have to be replicated in larger samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig, 4

Similar content being viewed by others

References

  1. Fazel S, Danesh J (2002) Serious mental disorder in 23.000 prisoners: a systematic review of 62 surveys. Lancet 359:545–550

    Article  PubMed  Google Scholar 

  2. Raine A, Yang Y (2006) Neural foundations to moral reasoning and antisocial behavior. Soc Cognit Affect Neurosci 1:203–213

    Article  Google Scholar 

  3. Blair RJR (2010) Neuroimaging of psychopathy and antisocial behavior: a targeted review. Curr Psychiatr Rep 12:76–82

    Article  CAS  Google Scholar 

  4. Herpertz SC, Sass H (2000) Emotional deficiency and psychopathy. Behav Sci Law 18:567–580

    Article  PubMed  CAS  Google Scholar 

  5. Gregory S, Ffytche D, Simmons A et al (2012) The antisocial brain: psychopathy matters: a structural MRI investigation of antisocial male violent offenders. Arch Gen Psychiatr. doi:10.1001/archgenpsychiatry.2012.222

    PubMed  Google Scholar 

  6. Black DW, Gunter T, Loveless P, Allen J, Sieleni B (2010) Antisocial personality disorder in incarcerated offenders: psychiatric comorbidity and quality of life. Ann Clin Psychiatr 22:113–120

    Google Scholar 

  7. Hare RD, Hart SD, Harpur TJ (1991) Psychopathy and the DSM-IV criteria for antisocial personality disorder. J Abnorm Psychol 100:391–398

    Article  PubMed  CAS  Google Scholar 

  8. Watzke S, Ulrich S, Marneros A (2006) Gender- and violence-related prevalence of mental disorders in prisoners. Eur Arch Psychiatr Clin Neurosci 256:414–421

    Article  Google Scholar 

  9. Herpertz SC, Dietrich TM, Wenning B, Krings T, Erberich SG, Willmes K, Thron A, Sass H (2001) Evidence of abnormal amygdala functioning in borderline personality disorder: a functional MRI study. Biol Psychiatr 50:292–298

    Article  CAS  Google Scholar 

  10. Schulze L, Domes G, Krüger A, Berger C, Fleischer M, Prehn K, Schmahl C, Grossmann A, Hauenstein K, Herpertz SC (2011) Neuronal correlates of cognitive reappraisal in borderline patients with affective instability. Biol Psychiatr 69:564–573

    Article  Google Scholar 

  11. Prehn K, Schulze L, Rossmann S, Berger C, Vohs K, Fleischer M, Hauenstein K, Keiper P, Domes G, Herpertz SC (2012) Effects of emotional stimuli on working memory processes in male criminal offenders with borderline personality disorder. World J Biol Psychiatr. doi:10.3109/15622975.2011.584906

    Google Scholar 

  12. Frankle WG, Lombardo I, New AS, Goodman M, Talbot PS, Hwang DR, Slifstein M, Curry S, Abi-Dargham A, Laruelle M, Siever LJ (2005) Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am J Psychiatr 162:915–923

    Article  PubMed  Google Scholar 

  13. New AS, Hazlett EA, Buchsbaum MS, Goodman M, Reynolds D, Mitropoulou V, Sprung L, Shaw RB Jr, Koenigsberg H, Platholi J, Siever LJ (2002) Blunted prefrontal cortical 18fluorodeoxyglucose position emission tomography response to meta-chlorophenylpiperazine in impulsive aggression. Arch Gen Psychiatr 59:621–629

    Article  PubMed  CAS  Google Scholar 

  14. Soloff P, Nutche J, Goradia D, Diwadkar V (2008) Structural brain abnormalities in borderline personality disorder: a voxel-based morphometry study. Psychiatr Res 164:223–236

    Article  Google Scholar 

  15. Völlm BA, Zhao L, Richardson P, Clark L, Deakin JF, Williams S, Dolan MC (2009) A voxel-based morphometric MRI study in men with borderline personality disorder: preliminary findings. Crim Behav Ment Health 19:64–72

    Article  PubMed  Google Scholar 

  16. Ruocco AC, Amirthavasagam S, Zakzanis KK (2012) Amygdala and hippocampal volume reductions as candidate endophenotypes for borderline personality disorder: a meta-analysis of magnetic resonance imaging studies. Psychiatr Res 201:245–252

    Article  Google Scholar 

  17. Boccardi M, Frisoni GB, Hare RD, Cavedo E, Najt P, Pievani M, Rasser PE, Laakso MP, Aronen HJ, Repo-Tiihonen E, Vauro O, Thompson PM, Tiihonen J (2011) Cortex and amygdala morphometry in psychopathy. Psychiatr Res 193:85–92

    Article  Google Scholar 

  18. Müller JL, Gänssbauer S, Sommer M, Döhnel K, Weber T, Schmidt-Wilcke T, Hajak G (2008) Gray matter changes in right superior temporal gyrus in criminal psychopathy. Evidence from voxel-based morphometry. Psychiatr Res 30:213–222

    Google Scholar 

  19. de Oliveira-Souza R, Hare RD, Bramati IE, Garrido GJ, Azevedo Ignácio F, Tovar-Moll F, Moll J (2008) Psychopathy as a disorder of the moral brain: fronto-temporo-limbic grey matter reductions demonstrated by voxel-based morphometry. Neuroimage 40:1202–1213

    Article  PubMed  Google Scholar 

  20. Tiihonen J, Rossi R, Laakso MP, Hodgins S, Perez J, Repo-Tiihonen E, Vaurio O, Soininen H, Aronen HJ, Könönen M, Thompson PM, Frisoni GB (2008) Brain anatomy of persistent violent offenders: more rather than less. Psychiatr Res 163:201–212

    Article  Google Scholar 

  21. Yang Y, Raine A, Narr KL, Colletti P, Toga AW (2009) Localization of deformations within the amygdala in individuals with psychopathy. Arch Gen Psychiatr 66:986–994

    Article  PubMed  Google Scholar 

  22. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  PubMed  Google Scholar 

  23. Prehn K, Schlagenhauf F, Schulze L, Berger C, Vohs K, Fleischer M, Hauenstein K, Keiper P, Domes G, Herpertz SC (2012) Neural correlates of risk taking in violent criminal offenders characterized by emotional hypo- and hyper-reactivity. Soc Neurosci. doi:10.80/17470919.2012.686923

    PubMed  Google Scholar 

  24. Herpertz SC, Werth U, Lukas G, Qunaibi M, Schuerkens A, Kunert HJ, Freese R, Flesch M, Mueller-Isberner R, Osterheider M, Sass H (2001) Emotion in criminal offenders with psychopathy and borderline personality disorder. Arch Gen Psychiatr 58:737–745

    Article  PubMed  CAS  Google Scholar 

  25. Gray NS, Hill C, McGleish A, Timmons D, MacCulloch MJ, Snowden RJ (2003) Prediction of violence and self-harm in mentally disordered offenders: a prospective study of the efficacy of HCR-20, PCL-R, and psychiatric symptomatology. J Consult Clin Psychol 71:443–451

    Article  PubMed  Google Scholar 

  26. Stalenheim EG, von Knorring L (1996) Psychopathy and Axis I and Axis II psychiatric disorders in a forensic psychiatric population in Sweden. Acta Psychiatr Scand 94:217–223

    Article  PubMed  CAS  Google Scholar 

  27. Loranger AW, Sartorius N, Andreoli A et al (1994) The international personality disorder examination. The World Health Organization/Alcohol, Drug Abuse, and Mental Health Administration international pilot study of personality disorders. Arch Gen Psychiatr 51:215–224

    Article  PubMed  CAS  Google Scholar 

  28. Cloninger CR, Przybeck TR, Svrakic DM, Krueger RF (1994) The temperament and character inventory (TCI): A guide to its development and use. Center for Psychobiology of Personality Washington University, Washington

    Google Scholar 

  29. Hampel R, Selg H (1957) Fragebogen zur Erfassung von Aggressivitatsfaktoren [Questionnaire for Factors of Aggressiveness]. Hogrefe, Göttingen

    Google Scholar 

  30. Hare RD (2003) The hare psychopathy checklist-revised. Multi Health Systems, Toronto

    Google Scholar 

  31. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maquire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdivding the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    Article  PubMed  Google Scholar 

  32. Moll J, de Oliveira-Souza R, Zahn R (2008) The neural basis of moral cognition: sentiments, concepts, and values. Ann N Y Acad Sci 1124:161–180

    Article  PubMed  Google Scholar 

  33. Moll J, Zahn R, de Oliveira-Souza R, Bramati IE, Krueger F, Tura B, Cavanagh AL, Grafman J (2011) Impairment of prosocial sentiments is associated with frontopolar and septal damage in frontotemporal dementia. Neuroimage 54:1735–1742

    Article  PubMed  Google Scholar 

  34. Raine A, Yang Y, Narr KL, Toga AW (2011) Sex differences in orbito-frontal gray as a partial explanation for sex differences in antisocial personality. Mol Psychiatr 16:227–236

    Article  CAS  Google Scholar 

  35. Huebner T, Vloet TD, Marx I, Konrad K, Fink GR, Herpertz SC, Herpertz-Dahlmann B (2008) Morphometric brain abnormalities in boys with conduct disorder. J Am Acad Child Adolesc Psychiatr 47:540–547

    Article  Google Scholar 

  36. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cognit Sci 15:85–93

    Article  Google Scholar 

  37. Matsuo K, Nicoletti M, Nomoto K, Hatch JP, Nery FG, Soares JC (2009) A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum Brain Mapp 30:1188–1195

    Article  PubMed  Google Scholar 

  38. New AS, Hazlett EA, Newmark RE, Zhang J, Triebwasser J, Meyerson D, Lazarus S, Trisdorfer R, Goldstein KE, Goodman M, Koenigsberg HW, Flory JD, Siever LJ, Buchsbaum MS (2009) Laboratory induced aggression: a positron emission tomography study of aggressive individuals with borderline personality disorder. Biol Psychiatr 66:1107–1114

    Article  Google Scholar 

  39. Wolf RC, Thomann PA, Sambataro F, Vasic N, Schmid M, Wolf ND (2012) Orbitofrontal cortex and impulsivity in borderline personality disorder: an MRI study of baseline brain perfusion. Eur Arch Psychiatr Clin Neurosci 262:677–685

    Article  Google Scholar 

  40. Schiffer B, Müller BW, Scherbaum N, Hodgins S, Forsting M, Wiltfang J, Gizewski ER, Leygraf N (2011) Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Arch Gen Psychiatr 68:1039–1049

    Article  PubMed  Google Scholar 

  41. Dolan MC, Deakin JF, Roberts N, Anderson IM (2002) Quantitative frontal and temporal structural MRI studies in personality-disordered offenders and control subjects. Psychiatr Res 116:133–149

    Article  Google Scholar 

  42. Olson IR, Plotzker A, Ezzyat Y (2007) The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130:1718–1731

    Article  PubMed  Google Scholar 

  43. Beadle JN, Yoon C, Guchess AH (2012) Age-related neural differences in affiliation and isolation. Cognit Affect Behav Neurosci 12:269–279

    Article  Google Scholar 

  44. Cassidy BS, Shih JY, Butchess AH (2012) Age-related changes to the neural correlates of social evaluation. Soc Neurosci. doi:10.1080/17470919.2012.674057

    PubMed  Google Scholar 

  45. Blair RJR (2005) Responding to the emotions of others: dissociating forms of empathy through the study of typical and psychiatric populations. Concious Cognit 14:698–718

    Article  CAS  Google Scholar 

  46. Bateman A, Fonagy P (2008) Comorbid antisocial and borderline personality disorders: mentalization-based treatment. J Clin Psychol 64:181–194

    Article  PubMed  Google Scholar 

  47. Northoff G, Bermpohl F (2004) Cortical midline structures and the self. Trends Cognit Sci 8:102–107

    Article  Google Scholar 

  48. Northoff G, Heinzel A, De Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain—a meta-analysis of imaging studies on the self. Neuroimage 31:440–457

    Article  PubMed  Google Scholar 

  49. Jankowiak-Siuda K, Rymarczyk K, Grabowska A (2011) How we empathize with others: a neurobiological perspective. Med Sci Monit 17:RA18–RA24

    Article  PubMed  Google Scholar 

  50. Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6:533–544

    Article  PubMed  CAS  Google Scholar 

  51. Lamm C, Decety J, Singer T (2011) Meta-analytic evidence for common and distinct neural networks associated with directly experiences pain and empathy for pain. Neuroimage 54:2492–2502

    Article  PubMed  Google Scholar 

  52. Bergouignan L, Chupin M, Czechowska Y, Kinkingnéhun S, Lemogne C, Le Bastard G, Lepage M, Garnero L, Colliot O, Fossati P (2009) Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? Neuroimage 45:29–37

    Article  PubMed  Google Scholar 

  53. Takahashi R, Ishii K, Miyamoto N, Yoshikawa T, Shimada K, Ohkawa S, Kakigi T, Yokoyama K (2010) Measurement of gray and white matter atrophy in dementia with Lewy bodies using diffeomorphic anatomic registration through exponentiated lie algebra: a comparison with conventional voxel-based morphometry. Am J Neuroradiol 31:1873–1878

    Article  PubMed  CAS  Google Scholar 

  54. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46:786–802

    Article  PubMed  Google Scholar 

  55. Mak HK, Zhang Z, Yau KK, Zhang L, Chan Q, Chu LW (2011) Efficacy of voxel-based morphometry with DARTEL and standard registration as imaging biomarkers in Alzheimer’s disease patients and cognitively normal older adults at 3.0 Tesla MR imaging. J Alzheimers Dis 23:655–664

    PubMed  Google Scholar 

  56. Shear PK, Sullivan EV, Lane B, Pfefferbaum A (1996) Mamillary body and cerebellar shrinkage in chronic alcoholics with and without amnesia. Alcohol Clin Exp Res 20:1489–1495

    Article  PubMed  CAS  Google Scholar 

  57. Sullivan EV, Deshmukh A, Desmond JE, Mathalon DH, Rosenbloom MJ, Lim KO, Pfefferbaum A (2000) Contribution of alcohol abuse to cerebellar volume deficits in men with schizophrenia. Arch Gen Psychiatr 57:894–902

    Article  PubMed  CAS  Google Scholar 

  58. Cooe DJ, Michie C (1999) Psychopathy across cultures: North America and Scotland compared. J Abnorm Psychol 108:58–68

    Article  Google Scholar 

Download references

Acknowledgments

We thank our collaborating partners in the penal institutions Butzow and Waldeck as well as in the forensic hospital Ueckermunde (director: Dipl. med. R. Strohm). Our particular thanks go to the Ministry of Justice Mecklenburg-Vorpommern for their support in the recruitment of participants. We are further very grateful for the training data used to construct the Harvard-Oxford maximum probability atlas, particularly to David Kennedy at the CMA, and also to: Christian Haselgrove, Centre for Morphometric Analysis, Harvard; Bruce Fischl, Martinos Center for Biomedical Imaging, MGH; Janis Breeze and Jean Frazier, Child and Adolescent Neuropsychiatric Research Program, Cambridge Health Alliance; Larry Seidman and Jill Goldstein, Department of Psychiatry of Harvard Medical School; Barry Kosofsky, Weill Cornell Medical Center. The study was supported by a grant of the German Research Foundation (DFG) to Sabine Herpertz (HE 2660/7-1). Katja Bertsch and Sabine C. Herpertz are members of the Clinical Research Group KFO256 (HE2660/12-1).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Bertsch.

Additional information

Katja Bertsch and Michel Grothe: shared first author-ship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertsch, K., Grothe, M., Prehn, K. et al. Brain volumes differ between diagnostic groups of violent criminal offenders. Eur Arch Psychiatry Clin Neurosci 263, 593–606 (2013). https://doi.org/10.1007/s00406-013-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-013-0391-6

Keywords

Navigation