Skip to main content

Advertisement

Log in

Increased 3-Hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Increased degradation of tryptophan (TRP) through the kynurenine (KYN) pathway (KP) is known to be involved in the molecular mechanisms resulting in the neuropathogenesis of Alzheimer’s disease (AD). Activation of the KP leads to the production of neurotoxic metabolites 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) by immune cells and neuroprotective derivates kynurenic acid (KYNA) and picolinic acid (PIC) by astrocytes and neurons. We therefore investigated whether an imbalance between neurotoxic and neuroprotective kynurenine metabolites could be detected in patients with AD. We measured serum levels of TRP, KYNA, 3-HK, PIC and QUIN in 20 patients with AD and for comparison in 20 patients with major depression, and 19 subjectively cognitive impaired subjects. Serum levels of 3-HK were markedly increased in AD patients compared to the comparison groups (p < .0001). Serum levels of the other KP metabolites were not significantly different between groups. Our data indicate an increased production of the neurotoxic KP metabolite 3-HK in AD. In contrast to its downstream metabolites QUIN and PIC, 3-HK can cross the blood–brain barrier via an active transport process. Our data therefore indicate an enhanced availability of 3-HK in the brain of AD patients, which may be related to the previously reported higher production of QUIN in AD brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42:733–738

    Article  PubMed  CAS  Google Scholar 

  2. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. Text Revision. American Psychiatric Association, Washington, DC

  3. Baran H, Jellinger K, Deecke L (1999) Kynurenine metabolism in Alzheimer’s disease. J Neural Transm 106:165–181

    Article  PubMed  CAS  Google Scholar 

  4. Bell C, Abrams J, Nutt D (2001) Tryptophan depletion and its implications for psychiatry. Br J Psychiatry 178:399–405

    Article  PubMed  CAS  Google Scholar 

  5. Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131–144

    Google Scholar 

  6. Bonda DJ, Mailankot M, Stone JG, Garrett MR, Staniszewska M, Castellani RJ, Siedlak SL, Zhu X, Lee HG, Perry G, Nagaraj RH, Smith MA (2010) Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer’s disease. Redox Rep 15:161–168

    Article  PubMed  CAS  Google Scholar 

  7. Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16:77–86

    Article  PubMed  CAS  Google Scholar 

  8. Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K, Andreasen N, Hofmann-Kiefer K, DeBernardis J, Kerkman D, McCulloch C, Kohnken R, Padberg F, Pirttila T, Schapiro MB, Rapoport SI, Moller HJ, Davies P, Hampel H (2002) Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 59:1267–1272

    Article  PubMed  Google Scholar 

  9. Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F (2001) Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J Neuroimmunol 120:190–198

    Article  PubMed  CAS  Google Scholar 

  10. Chiarugi A, Meli E, Moroni F (2001) Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J Neurochem 77:1310–1318

    Article  PubMed  CAS  Google Scholar 

  11. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  PubMed  CAS  Google Scholar 

  12. Cozzi A, Carpenedo R, Moroni F (1999) Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61–8048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab 19:771–777

    Article  PubMed  CAS  Google Scholar 

  13. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    Article  PubMed  CAS  Google Scholar 

  14. Dal Forno G, Palermo MT, Donohue JE, Karagiozis H, Zonderman AB, Kawas CH (2005) Depressive symptoms, sex, and risk for Alzheimer’s disease. Ann Neurol 57:381–387

    Article  PubMed  Google Scholar 

  15. de Carvalho LP, Bochet P, Rossier J (1996) The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. Neurochem Int 28:445–452

    Article  PubMed  Google Scholar 

  16. Eastman CL, Guilarte TR (1989) Cytotoxicity of 3-hydroxykynurenine in a neuronal hybrid cell line. Brain Res 495:225–231

    Article  PubMed  CAS  Google Scholar 

  17. Edwards SR, Mather LE (2003) Diclofenac increases the accumulation of kynurenate following tryptophan pretreatment in the rat: a possible factor contributing to its antihyperalgesic effect. Inflammopharmacology 11:277–292

    Article  PubMed  CAS  Google Scholar 

  18. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    Article  PubMed  CAS  Google Scholar 

  19. Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37:526–531

    Article  PubMed  CAS  Google Scholar 

  20. Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY, Muffat JA, Scarpa RC, Chylack LT Jr, Bowden EF, Tanzi RE, Bush AI (2000) 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry 39:7266–7275

    Article  PubMed  CAS  Google Scholar 

  21. Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17:455–461

    Article  PubMed  CAS  Google Scholar 

  22. Guidetti P, Schwarcz R (1999) 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosci 11:3857–3863

    Article  PubMed  CAS  Google Scholar 

  23. Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356–1365

    Google Scholar 

  24. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:1–13

    Google Scholar 

  25. Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003a) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112

    Google Scholar 

  26. Guillemin GJ, Smythe GA, Veas LA, Takikawa O, Brew BJ (2003b) A beta 1–42 induces production of quinolinic acid by human macrophages and microglia. Neuroreport 14:2311–2315

    Google Scholar 

  27. Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM (2005a) Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 31(4):395–404

    Article  PubMed  CAS  Google Scholar 

  28. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005b) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23

    Google Scholar 

  29. Guillemin GJ, Wang L, Brew BJ (2005c) Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex. J Neuroinflammation 2:16

    Google Scholar 

  30. Guillemin GJ, Brew BJ, Noonan CE, Knight TG, Smythe GA, Cullen KM (2007a) Mass spectrometric detection of quinolinic acid in microdissected Alzheimer's disease plaques. In: Takai K (ed) International Congress Series. pp 404–408

  31. Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007b) Characterization of the kynurenine pathway in human neurons. J Neurosci 27(47):12884–12892

  32. Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 55:204–211

    Article  PubMed  CAS  Google Scholar 

  33. Hartai Z, Juhasz A, Rimanoczy A, Janaky T, Donko T, Dux L, Penke B, Toth GK, Janka Z, Kalman J (2007) Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease. Neurochem Int 50:308–313

    Article  PubMed  CAS  Google Scholar 

  34. Heyes MP, Chen CY, Major EO, Saito K (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326:351–356

    PubMed  CAS  Google Scholar 

  35. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    PubMed  CAS  Google Scholar 

  36. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583–595

    Article  PubMed  CAS  Google Scholar 

  37. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328

    Article  PubMed  CAS  Google Scholar 

  38. Koh JY, Choi DW (1991) Selective blockade of non-NMDA receptors does not block rapidly triggered glutamate-induced neuronal death. Brain Res 548:318–321

    Article  PubMed  CAS  Google Scholar 

  39. Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, Nitsch R, Bechmann I (2005) Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J 19:1347–1349

    PubMed  CAS  Google Scholar 

  40. McGeer EG, McGeer PL (2003) Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27:741–749

    Article  PubMed  CAS  Google Scholar 

  41. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    Article  PubMed  CAS  Google Scholar 

  42. Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98:143–151

    Article  PubMed  CAS  Google Scholar 

  43. Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307

    Article  PubMed  CAS  Google Scholar 

  44. Palmer AM (1996) Neurochemical studies of Alzheimer’s disease. Neurodegeneration 5:381–391

    Article  PubMed  CAS  Google Scholar 

  45. Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ (2009) The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS ONE 4:e6344

    Article  PubMed  Google Scholar 

  46. Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217

    Article  PubMed  CAS  Google Scholar 

  47. Schneider P, Hampel H, Buerger K (2009) Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neurosci Ther 15:358–374

    Article  PubMed  CAS  Google Scholar 

  48. Schubert P, Ogata T, Marchini C, Ferroni S (2001) Glia-related pathomechanisms in Alzheimer’s disease: a therapeutic target? Mech Ageing Dev 123:47–57

    Article  PubMed  CAS  Google Scholar 

  49. Schwarcz R (2004) The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol 4:12–17

    Article  PubMed  CAS  Google Scholar 

  50. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  PubMed  CAS  Google Scholar 

  51. Smythe GA, Braga O, Brew BJ, Grant RS, Guillemin GJ, Kerr SJ, Walker DW (2002) Concurrent quantification of quinolinic, picolinic, and nicotinic acids using electron-capture negative-ion gas chromatography–mass spectrometry. Anal Biochem 301(1):21–26

    Google Scholar 

  52. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group (1998) Consensus report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer’s Disease”. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Neurobiol Aging 19:109–116

    Article  Google Scholar 

  53. Ting KK, Brew BJ, Guillemin GJ (2009) Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer’s disease. J Neuroinflamm 6:36

    Article  Google Scholar 

  54. Welsh KA, Butters N, Mohs RC, Beekly D, Edland S, Fillenbaum G, Heyman A (1994) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 44:609–614

    Article  PubMed  CAS  Google Scholar 

  55. Whetsell WO Jr, Shapira NA (1993) Neuroexcitation, excitotoxicity and human neurological disease. Lab Invest 68:372–387

    PubMed  CAS  Google Scholar 

  56. Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Johanna Zach for her excellent work in performing the HPLC analyses. We also thank Lilya Jertila-Aqil and Felician Iancu for assistance. Part of this work was supported by grants from the Friedrich Baur Foundation, the BMBF (grant no. 01ES0704 to M.J.S and H.H.) and the Interdisciplinary Faculty, Department “Ageing Science and Humanities”, University of Rostock, and from the Hirnliga Foundation, Wiehl, Germany, to S.J.T. G.G. would like to acknowledge the support of the Alzheimer’s Association (IIRG-08-89545), the Rebecca Cooper Foundation (Australia), the Curran Foundation and the University of New South Wales.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, M.J., Guillemin, G.J., Teipel, S.J. et al. Increased 3-Hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci 263, 345–352 (2013). https://doi.org/10.1007/s00406-012-0384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-012-0384-x

Keywords

Navigation