Skip to main content

Advertisement

Log in

A promoter variant of SHANK1 affects auditory working memory in schizophrenia patients and in subjects clinically at risk for psychosis

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Mutations in postsynaptic scaffolding genes contribute to autism, thus suggesting a role in pathological processes in neurodevelopment. Recently, two de novo mutations in SHANK3 were described in schizophrenia patients. In most cases, abnormal SHANK3 genotype was also accompanied by cognitive disruptions. The present study queries whether common SHANK variants may also contribute to neuropsychological dysfunctions in schizophrenia. We genotyped five common coding or promoter variants located in SHANK1, SHANK2 and SHANK3. A comprehensive test battery was used to assess neuropsychological functions in 199 schizophrenia patients and 206 healthy control subjects. In addition, an independent sample of 77 subjects at risk for psychosis was analyzed for replication of significant findings. We found the T allele of the SHANK1 promoter variant rs3810280 to lead to significantly impaired auditory working memory as assessed with digit span (12.5 ± 3.6 vs. 14.8 ± 4.1, P < .001) in schizophrenia cases, applying strict Bonferroni correction for multiple testing. This finding was replicated for forward digit span in the at-risk sample (7.1 ± 2.0 vs. 8.3 ± 2.0, P = .044). Previously, altered memory functions and reduced dendritic spines and postsynaptic density of excitatory synapses were reported in SHANK1 knock-out mice. Moreover, the atypical neuroleptic clozapine was found to increase SHANK1 density in rats. Our findings suggest a role of SHANK1 in working memory deficits in schizophrenia, which may arise from neurodevelopmental changes to prefrontal cortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. APA (1994) Diagnostic and statistical manual of mental disorders. American Psychiatric Association, Washington, DC

    Google Scholar 

  2. Baddeley A (2010) Working memory. Curr Biol 20:R136–R140

    Article  PubMed  CAS  Google Scholar 

  3. Balu DT, Coyle JT (2011) Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 35:848–870

    Article  PubMed  CAS  Google Scholar 

  4. Barch DM, Smith E (2008) The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia. Biol Psychiatry 64:11–17

    Article  PubMed  Google Scholar 

  5. Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M, Sawaya MR, Salyer D, Gundelfinger ED, Bowie JU (2006) An architectural framework that may lie at the core of the postsynaptic density. Science 311:531–535

    Article  PubMed  CAS  Google Scholar 

  6. Bechdolf A, Ruhrmann S, Wagner M, Kuhn KU, Janssen B, Bottlender R, Wieneke A, Schulze-Lutter F, Maier W, Klosterkotter J (2005) Interventions in the initial prodromal states of psychosis in Germany: concept and recruitment. Br J Psychiatry Suppl 48:s45–s48

    Article  PubMed  Google Scholar 

  7. Becker T, Knapp M (2004) A powerful strategy to account for multiple testing in the context of haplotype analysis. Am J Hum Genet 75:561–570

    Article  PubMed  CAS  Google Scholar 

  8. Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, Endris V, Roberts W, Szatmari P, Pinto D, Bonin M, Riess A, Engels H, Sprengel R, Scherer SW, Rappold GA (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42:489–491

    Article  PubMed  CAS  Google Scholar 

  9. Condra JA, Neibergs H, Wei W, Brennan MD (2007) Evidence for two schizophrenia susceptibility genes on chromosome 22q13. Psychiatr Genet 17:292–298

    Article  PubMed  Google Scholar 

  10. Cornblatt BA, Risch NJ, Faris G, Friedman D, Erlenmeyer-Kimling L (1988) The continuous performance test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Res 26:223–238

    Article  PubMed  CAS  Google Scholar 

  11. Critchlow HM, Maycox PR, Skepper JN, Krylova O (2006) Clozapine and haloperidol differentially regulate dendritic spine formation and synaptogenesis in rat hippocampal neurons. Mol Cell Neurosci 32:356–365

    Article  PubMed  CAS  Google Scholar 

  12. Dickinson D, Ramsey ME, Gold JM (2007) Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry 64:532–542

    Article  PubMed  Google Scholar 

  13. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Roge B, Heron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27

    Article  PubMed  CAS  Google Scholar 

  14. Failla P, Romano C, Alberti A, Vasta A, Buono S, Castiglia L, Luciano D, Di Benedetto D, Fichera M, Galesi O (2007) Schizophrenia in a patient with subtelomeric duplication of chromosome 22q. Clin Genet 71:599–601

    Article  PubMed  CAS  Google Scholar 

  15. Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35:528–548

    Article  PubMed  Google Scholar 

  16. Frommann I, Pukrop R, Brinkmeyer J, Bechdolf A, Ruhrmann S, Berning J, Decker P, Riedel M, Möller HJ, Wölwer W, Gaebel W, Klosterkotter J, Maier W, Wagner M (2011) Neuropsychological Profiles in different at-risk states of psychosis: executive control impairment in the early–and additional memory dysfunction in the late–prodromal state. Schizophr Bull 37:861–873

    Article  PubMed  Google Scholar 

  17. Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E, Lapointe M, Peng H, Cote M, Noreau A, Hamdan FF, Addington AM, Rapoport JL, Delisi LE, Krebs MO, Joober R, Fathalli F, Mouaffak F, Haghighi AP, Neri C, Dube MP, Samuels ME, Marineau C, Stone EA, Awadalla P, Barker PA, Carbonetto S, Drapeau P, Rouleau GA (2010) De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci USA 107:7863–7868

    Article  PubMed  CAS  Google Scholar 

  18. Gauthier J, Spiegelman D, Piton A, Lafreniere RG, Laurent S, St-Onge J, Lapointe L, Hamdan FF, Cossette P, Mottron L, Fombonne E, Joober R, Marineau C, Drapeau P, Rouleau GA (2009) Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet B Neuropsychiatr Genet 150B:421–424

    Article  PubMed  CAS  Google Scholar 

  19. Gold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR (1997) Auditory working memory and Wisconsin card sorting test performance in schizophrenia. Arch Gen Psychiatry 54:159–165

    Article  PubMed  CAS  Google Scholar 

  20. Gur RE, Calkins ME, Gur RC, Horan WP, Nuechterlein KH, Seidman LJ, Stone WS (2007) The consortium on the genetics of schizophrenia: neurocognitive endophenotypes. Schizophr Bull 33:49–68

    Article  PubMed  Google Scholar 

  21. Helmstaedter C, Lendt M, Lux S (2001) VLMT—Verbaler Lern- und Merkfähigkeitstest Manual. Beltz, Göttingen

    Google Scholar 

  22. Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, Kidd FL, Sung CC, Miyakawa T, Bear MF, Weinberg RJ, Sheng M (2008) Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci 28:1697–1708

    Article  PubMed  CAS  Google Scholar 

  23. Kalscheuer VM, Feenstra I, Van Ravenswaaij-Arts CM, Smeets DF, Menzel C, Ullmann R, Musante L, Ropers HH (2008) Disruption of the TCF4 gene in a girl with mental retardation but without the classical Pitt-Hopkins syndrome. Am J Med Genet A 146A:2053–2059

    Article  PubMed  CAS  Google Scholar 

  24. Lee J, Park S (2005) Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol 114:599–611

    Article  PubMed  Google Scholar 

  25. Maurer K, Hörrmann F, Trendler G, Schmidt M, Häfner H (2006) Identification of psychosis risk by the early recognition inventory (ERIraos)—description of the schedules and preliminary results on reliability and validity of the checklist. Nervenheilkunde 25:11–16

    Google Scholar 

  26. Mössner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81:1289–1297

    Article  Google Scholar 

  27. Müller NG, Knight RT (2006) The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience 139:51–58

    Article  PubMed  Google Scholar 

  28. Quednow BB, Ettinger U, Mössner R, Rujescu D, Giegling I, Collier DA, Schmechtig A, Kuhn KU, Moller HJ, Maier W, Wagner M, Kumari V (2011) The Schizophrenia Risk Allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers. J Neurosci 31:6684–6691

    Article  PubMed  CAS  Google Scholar 

  29. Rapoport JL, Addington AM, Frangou S, Psych MR (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434–449

    Article  PubMed  CAS  Google Scholar 

  30. Reif A, Schmitt A, Fritzen S, Lesch KP (2007) Neurogenesis and schizophrenia: dividing neurons in a divided mind? Eur Arch Psychiatry Clin Neurosci 257:290–299

    Article  PubMed  Google Scholar 

  31. Reitan RM (1979) Trail making test (TMT). Beltz, Weinheim

    Google Scholar 

  32. Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, Bockaert J, Fagni L (2005) Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 25:3560–3570

    Article  PubMed  CAS  Google Scholar 

  33. Ruhrmann S, Bechdolf A, Kuhn KU, Wagner M, Schultze-Lutter F, Janssen B, Maurer K, Hafner H, Gaebel W, Möller HJ, Maier W, Klosterkötter J (2007) Acute effects of treatment for prodromal symptoms for people putatively in a late initial prodromal state of psychosis. Br J Psychiatry Suppl 51:s88–s95

    Article  PubMed  CAS  Google Scholar 

  34. Ruhrmann S, Schultze-Lutter F, Klosterkötter J (2003) Early detection and intervention in the initial prodromal phase of schizophrenia. Pharmacopsychiatry 36(Suppl 3):S162–S167

    Google Scholar 

  35. Silver H, Feldman P, Bilker W, Gur RC (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160:1809–1816

    Article  PubMed  Google Scholar 

  36. Snitz BE, Macdonald AW 3rd, Carter CS (2006) Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophr Bull 32:179–194

    Article  PubMed  Google Scholar 

  37. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Bottcher Y, Olesen J, Breuer R, Moller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Rethelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jonsson EG, Terenius L, Agartz I, Petursson H, Nothen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747

    PubMed  CAS  Google Scholar 

  38. Tewes U (1991) Hamburg-Wechsler-Intelligenztest für Erwachsene–revision (HAWIE-R). Hogrefe, Göttingen

    Google Scholar 

  39. Valtschanoff JG, Weinberg RJ (2001) Laminar organization of the NMDA receptor complex within the postsynaptic density. J Neurosci 21:1211–1217

    PubMed  CAS  Google Scholar 

  40. WHO (1992) International classification of disease, tenth revision. World Health Organisation, Geneva, Switzerland

    Google Scholar 

  41. Wouterlood FG, Bockers T, Witter MP (2003) Synaptic contacts between identified neurons visualized in the confocal laser scanning microscope. Neuroanatomical tracing combined with immunofluorescence detection of post-synaptic density proteins and target neuron-markers. J Neurosci Methods 128:129–142

    Article  PubMed  CAS  Google Scholar 

  42. Zilles D, Burke S, Schneider-Axmann T, Falkai P, Gruber O (2009) Diagnosis-specific effect of familial loading on verbal working memory in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:309–315

    Article  PubMed  Google Scholar 

  43. Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J, Reardon W, Saraiva J, Cabral A, Gohring I, Devriendt K, de Ravel T, Bijlsma EK, Hennekam RC, Orrico A, Cohen M, Dreweke A, Reis A, Nurnberg P, Rauch A (2007) Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). Am J Hum Genet 80:994–1001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was part of the German Research Network on Schizophrenia and was funded by the German Federal Ministry for Education and Research BMBF (grants 01GI0501, 01GI0232, 01GI0234 and 01GV0907), the German Research Foundation DFG (grants Wa 731/6 and Wa 731/4), and by the 7th framework program of the European Union (ADAMS project, HEALTH-F4-2009-242257). We thank V. Guttenthaler, A. Petruschke and C. Hanses for expert technical assistance. The authors thank all clinicians, psychiatrists, psychologists and study nurses involved in the study.

Conflicts of interest

The authors report no biomedical financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainald Mössner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lennertz, L., Wagner, M., Wölwer, W. et al. A promoter variant of SHANK1 affects auditory working memory in schizophrenia patients and in subjects clinically at risk for psychosis. Eur Arch Psychiatry Clin Neurosci 262, 117–124 (2012). https://doi.org/10.1007/s00406-011-0233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-011-0233-3

Keywords

Navigation