Skip to main content
Log in

A morphometric analysis of the septal nuclei in schizophrenia and affective disorders: reduced neuronal density in the lateral septal nucleus in bipolar disorder

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The septal nuclei are assumed to play a significant role in the pathophysiology of schizophrenia and affective disorders. The aim of this study was to morphometrically characterize the septal nuclei in patients with schizophrenia, bipolar disorder, and major depressive disorder, when compared with healthy control subjects. We analyzed the septal nuclei by determining the density and size of the neurons in postmortem brains in 17 patients with schizophrenia, 8 patients with bipolar disorder, 7 patients with major depressive disorder, and 14 control subjects matched for age and gender. There was a significant reduction in the neuronal density, but not in the mean cross-sectional area, in the lateral septal nucleus (P = 0.013) in patients with bipolar disorder when compared with control subjects. There were no significant changes in the neuronal density of the septal nuclei of the medial and lateral cell groups in patients with schizophrenia and major depressive disorder when compared with control subjects. There was a significant negative correlation between neuronal density in the lateral septal nucleus and disease duration in patients with major depressive disorder (P = 0.037, r = −0.9). The histopathological abnormality of the decreased neuronal density in the lateral septal nucleus, which is an important limbic region involved in emotions, might be a neuropathological correlate of bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McNaughton N, Corr PJ (2004) A two-dimensional neuropsychology of defence: fear/anxiety and defensive distance. Neurosci Biobehav Rev 28:285–305

    Article  PubMed  Google Scholar 

  2. Sheehan TP, Chambers RA, Russell DR (2004) Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Brain Res Rev 46:71–117

    Article  PubMed  Google Scholar 

  3. Lubar JF, Numan R (1973) Behavioral and physiological studies on septal function and related medial cortical structures. Behav Biol 8:1–25

    Article  CAS  PubMed  Google Scholar 

  4. Danner H, Pfister C (1981) Investigation on the cytoarchitecture of the nucleus accumbens septi of rat. Anat Anz 150:264–280

    CAS  PubMed  Google Scholar 

  5. Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605

    Article  CAS  PubMed  Google Scholar 

  6. Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HWM, Hof PR, Schmitz C (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692

    Article  PubMed  Google Scholar 

  7. Brady JV, Nauta WJH (1953) Subcortical mechanisms in emotional behaviour: affective changes following septal forebrain lesions in the albino rat. J Comp Physiol Psych 46:339–346

    Article  CAS  Google Scholar 

  8. Turgeon SM, Kegel G, Davis MM (2001) Electrolytic lesions of the medial septum enhance latent inhibition in a conditioned taste aversion paradigm. Brain Res 890:333–337

    Article  CAS  PubMed  Google Scholar 

  9. van der Staay FJ, Bouger P, Lehmann O, Lazarus C, Cosquer B, Koenig J, Stump V, Cassel JC (2006) Long-term effects of immunotoxicy cholinergic lesions in the septum on acquisition of the cone-field task and noncognitive measures in rats. Hippocampus 16:1061–1079

    Article  PubMed  Google Scholar 

  10. Brockhaus H (1942) Zur feineren Anatomie des Septums und des Striatums. J Psychol Neurol 51:1–56

    Google Scholar 

  11. Horvath S, Palkovits M (1987) Morphology of the human septal area: a topographic atlas. Acta Morphol Hung 35:157–174

    CAS  PubMed  Google Scholar 

  12. Andy OJ, Stephan H (1969) The septum in the human brain. J Comp Neurol 133:383–410

    Article  Google Scholar 

  13. Ulfig N, Braack H (1989) Neuronal types and their percent distribution within the magnocellular nuclei of the human basal forebrain. Acta Anat 134:237–241

    Article  CAS  PubMed  Google Scholar 

  14. Zeman W, King FA (1958) Tumour of the septum pellucidum and adjacent structures with abnormal affective behavior: an anterior midline structure syndrome. J Nerv Ment Dis 127:490–502

    Article  CAS  PubMed  Google Scholar 

  15. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans, and Korsakoff’s disease. Acta Neuropathol (Berl) 61:101–108

    Article  CAS  Google Scholar 

  16. Averback P (1981) Structural lesions of the brain in young schizophrenics. Can J Neurol Sci 8:73–76

    CAS  PubMed  Google Scholar 

  17. Beck E, Gajdusek DC (1966) Variable size of the septal nuclei in man. Nature 210:1338–1340

    Article  CAS  PubMed  Google Scholar 

  18. Heath RG, Walker CF (1985) Correlation of deep and surface electroencephalograms with psychosis and hallucinations in schizophrenics: a report of two cases. Biol Psychiatry 20:669–674

    Article  CAS  PubMed  Google Scholar 

  19. Heath RG, Dempsey CW, Fontana CJ, Fitzjarelli AT (1980) Feedback loop between cerebellum and septo-hippocampal sites: its role in emotion and epilepsy. Biol Psychiatry 15:541–546

    CAS  PubMed  Google Scholar 

  20. Bogerts B (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophr Bull 23:423–435

    CAS  PubMed  Google Scholar 

  21. Rajkowska G (2002) Cell pathology in mood disorder. Sem Clin Neuropsychiatry 7:281–292

    Article  Google Scholar 

  22. Danos P, Baumann B, Krämer A, Bernstein H-G, Stauch R, Krell D, Falkai P, Bogerts B (2003) Volumes of association thalamic nuclei in schizophrenia: a postmortem study. Schizophr Res 60:141–155

    Article  PubMed  Google Scholar 

  23. Mai JK, Assheuer J, Paxinos G (1997) Atlas of the human brain. Academic Press Harcourt Brace & Company, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto, pp 154–185

  24. Schumann CM, Amaral DG (2005) Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 491:320–329

    Article  PubMed  Google Scholar 

  25. Brisch R, Bernstein H-G, Krell D, Dobrowolny H, Bielau H, Steiner J, Gos T, Funke S, Stauch R, Knüppel S, Bogerts B (2009) Dopamine-glutamate abnormalities in the frontal cortex associated with the catechol-O-methyltransferase (COMT) in schizophrenia. Brain Res 1269:166–175

    Article  CAS  PubMed  Google Scholar 

  26. Gundersen HJ, Jensen EB, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology-reconsidered. J Microsc 151:3–21

    Google Scholar 

  27. Brisch R, Bernstein H-G, Krell D, Stauch R, Dowbrowolny H, Trübner K, Kropf S, Bielau H, Bogerts B (2007) Volumetric analysis of septal region in schizophrenia and affective disorder. Eur Arch Psychiatry and Clin Neurosci 257:140–148

    Article  Google Scholar 

  28. Beyer JL, Krishnan KRR (2002) Volumetric brain imaging findings in mood disorders. Bipolar Disord 4:89–104

    Article  PubMed  Google Scholar 

  29. Campbell S, MacQueen G (2006) An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 19:25–33

    Article  PubMed  Google Scholar 

  30. Takahashi T, Malhi GS, Wood SJ, Yücel M, Walterfang M, Nakamura K, Suzuki M, Pantelis C (2010) Midline brain abnormalities in established bipolar affective disorder. J Affect Disord 25:140–148

    Google Scholar 

  31. Radenbach K, Flaig V, Schneider-Axmann T, Usher J, Reith W, Falkai P, Gruber O, Scherk H (2010) Thalamic volumes in patients with bipolar disorder. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-010-0100-7

  32. Dahabra S, Ashton CH, Bahrainian M, Britton PG, Ferrier IN, McAllister VA, Marsh VR, Moore PB (1998) Structural and functional abnormalities in elderly patients clinically recovered from early- and late-onset depression. Biol Psychiatry 44:34–46

    Article  CAS  PubMed  Google Scholar 

  33. Sheline YI, Gado MH, Price JL (1998) Amygdala core nuclei are decreased in recurrent major depression. Neuroreport 9:2023–2027

    Article  CAS  PubMed  Google Scholar 

  34. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–117

    Article  CAS  PubMed  Google Scholar 

  35. Frodl T, Meisenzahl EM, Zetsche T, Born C, Groll C, Jäger M, Leinsinger G, Bottlender R, Hahn K, Möller H-J (2002) Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 159:1112–1118

    Article  PubMed  Google Scholar 

  36. Posener JA, Wang L, Price JL, Gado MH, Province MA, Miller MI, Babb CM, Csernansky JG (2003) High-dimensional mapping of the hippocampus in depression. Am J Psychiatry 160:83–89

    Article  PubMed  Google Scholar 

  37. Selemon LD, Rajkowska G (2003) Cellular pathology in the dorsolateral prefrontal cortex distinguishes schizophrenia from bipolar disorder. Curr Mol Med 3:427–438

    Article  CAS  PubMed  Google Scholar 

  38. Benes FM, Vincent SL, Todtenkopf M (2001) The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry 50:395–406

    Article  CAS  PubMed  Google Scholar 

  39. Todtenkopf MS, Vincent SL, Benes FM (2005) A cross-study meta-analysis and three- dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenia and bipolar brain. Schizophr Res 73:79–89

    Article  PubMed  Google Scholar 

  40. Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97

    Article  CAS  PubMed  Google Scholar 

  41. Bouras C, Kövari E, Hof PR, Riederer BM, Giannakopoulos P (2001) Anterior cingulate cortex pathology in schizophrenia and bipolar disorder. Acta Neuropathol 102:373–379

    CAS  PubMed  Google Scholar 

  42. Beretta S, Pantazopoulos H, Lange N (2007) Neuron numbers and volume of the amygdala in subjects diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry 62:884–893

    Article  Google Scholar 

  43. Chana G, Landau S, Beasley C, Everall IP, Cotter D (2003) Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased density. Biol Psychiatry 53:1086–1098

    Article  PubMed  Google Scholar 

  44. Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    Article  CAS  PubMed  Google Scholar 

  45. Cotter D, Mackay D, Frangou S, Hudson L, Landau S (2004) Cell density, cortical thickness in Heschl`s gyrus in schizophrenia, major depression, bipolar disorder. Br J Psychiatry 185:258–259

    Article  PubMed  Google Scholar 

  46. Öngür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95:13290–13295

    Article  PubMed  Google Scholar 

  47. Cotter D, Hudson L, Landau S (2005) Evidence for orbitofrontal pathology in bipolar disorder and major depression, but not in schizophrenia. Bipolar Disord 7:358–369

    Article  PubMed  Google Scholar 

  48. Liu L, Schulz CS, Lee S, Reutiman TJ, Fatemi SH (2007) Hippocampal CA1 pyramidal cell size is reduced in bipolar disorder. Cell Mol Neurobiol 27:351–358

    Article  PubMed  Google Scholar 

  49. Bezchlibnyk YB, Sun X, Wang J-F, MacQueen GM, McEwen BS, Young LT (2007) Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder. J Psychiatry Neurosci 32:203–210

    PubMed  Google Scholar 

  50. Young KA, Holcomb LA, Yazdani U, Hicks PB, German DC (2004) Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry 161:1270–1277

    Article  PubMed  Google Scholar 

  51. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurius GJ, Meltzer HY, Uylings HBM, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56:640–650

    Article  PubMed  Google Scholar 

  52. Amunts K, Zilles K (2007) Funktionelle Neuroanatomie. In: Schneider F, Fink GR (eds) Funktionelle MRT in Psychiatrie und Neurologie. Springer Medizin Verlag Heidelberg, 1, Auflage, pp 1–58

    Google Scholar 

  53. Grossman SP (1977) An experimental dissection of the septal syndrome. Ciba Found Symp 58:227–273

    PubMed  Google Scholar 

  54. Martin MM, Horn KL, Kusman KJ, Wallace DG (2007) Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning. Physiol Behav 90:412–424

    Article  CAS  PubMed  Google Scholar 

  55. Cavazos JE, Wang C-J, Sitoh Y-Y, Ng SES, Tien RD (1997) Anatomy and pathology of the septal region. Neuroimaging Clin N Am 7:67–78

    CAS  PubMed  Google Scholar 

  56. Baumann B, Bielau H, Krell D, Agelink MW, Diekmann S, Wurthmann C, Trübner K, Bernstein H-G, Danos P, Bogerts B (2002) Circumscribed numerical deficit of dorsal raphe neurons in mood disorders. Psychol Med 32:93–103

    Article  CAS  PubMed  Google Scholar 

  57. Bernstein H-G, Stanarius A, Baumann B, Henning H, Krell D, Falkai P, Bogerts B (1998) Nitric oxide synthase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875

    Article  CAS  PubMed  Google Scholar 

  58. Baumann B, Bogerts B (2001) Neuroanatomical studies of bipolar disorder. Br J Psychiatry Suppl 178:s142–s147

    Article  Google Scholar 

  59. Bernstein H-G, Heinemann A, Krell D, Mawrin C, Bielau H, Danos P, Diekmann S, Keilhoff G, Bogerts B, Baumann B (2002) Further immunohistochemical evidence for impaired NO signalling in the hypothalamus of depressed patients. Ann NY Acad Sci 973:91–93

    Article  CAS  PubMed  Google Scholar 

  60. Bielau H, Mawrin C, Krell D, Agelink MW, Trübner K, Davis R, Gos T, Bogerts B, Bernstein H-G, Baumann B (2005) Differences in activation of the dorsal raphe nucleus depending on performance of suicide. Brain Res 255:401–412

    Google Scholar 

  61. Manaye KF, Lei D-L, Tizabi Y, Davila-Garcia MI, Mouton PR, Kelly PH (2005) Selective neuron loss in the paraventricular nucleus of hypothalamus in patients suffering from major depression and bipolar disorder. J Neuropathol Exp Neurol 64:224–229

    PubMed  Google Scholar 

  62. Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein H-G (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 40:557–567

    Article  CAS  PubMed  Google Scholar 

  63. Watson S, Gallagher P, Ritchie JC, Ferrier N, Young AH (2004) Hypothalamic- pituitary-adrenal-axis function in patients with bipolar disorder. Br J Psychiatry 184:496–502

    Article  PubMed  Google Scholar 

  64. Daban C, Vieta E, Mackin P, Young AH (2005) Hypothalamic-pituitary-adrenal axis and bipolar disorder. Psychiatr Clin North Am 28:469–480

    Article  CAS  PubMed  Google Scholar 

  65. Jokinen J, Nordström P (2009) HPA axis hyperactivity and attempted suicide in young adult mood disorder patients. J Affect Disord 116:117–120

    Article  CAS  PubMed  Google Scholar 

  66. Pompili M, Serafini G, Innamorati M, Möller-Leimkühler AM, Giupponi G, Girardi P, Tatarelli R, Lester D (2010) The hypothalamic-pituitary-adrenal axis and serotonin abnormalities: a selective overview for the implications of suicide prevention. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-010-0108-z

  67. Murakami S, Imbe H, Morikawa Y, Kuobo C, Senba E (2005) Chronic stress, as well as acute stress, reduces BDNF mRNA expression but less robustly. Neurosci Res 53:129–139

    Article  CAS  PubMed  Google Scholar 

  68. Das GD, Altman J (1970) Postnatal neurogenesis in the caudate nucleus and nucleus accumbens septi. Brain Res 21:122–127

    Article  CAS  PubMed  Google Scholar 

  69. Raisman G (1969) Neuronal plasticity in the septal nuclei of the adult rat. Brain Res 14:25–48

    Article  CAS  PubMed  Google Scholar 

  70. Steciuk M, Kram M, Kramer GL, Petty F (1999) Decrease in stress-induced c-Fos-like immunoreactivity in the lateral septal nucleus of learned helpless rats. Brain Res 822:256–259

    Article  CAS  PubMed  Google Scholar 

  71. Huang YH, Cheng C-Y, Hong C-J, Tsai SJ (2004) Expression of c-Fos-like immunoreactivity in the brain of mice with learned helplessness. Neurosci Lett 363:280–283

    Article  CAS  PubMed  Google Scholar 

  72. Zhang J-H, Pimenta AF, Levitt P, Zhou R (1997) Dynamic expression suggests multiple roles of the EPH family receptor brain-specific kinase (Bsk) during mouse neurogenesis. Mol Brain Res 47:202–214

    Article  CAS  PubMed  Google Scholar 

  73. Bernier PJ, Vinet J, Cossette M, Parent A (2000) Characterization of the sub ventricular zone of the adult human brain: evidence for the involvement of Bcl-2. Neurosci Res 37:67–78

    Article  CAS  PubMed  Google Scholar 

  74. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717

    CAS  PubMed  Google Scholar 

  75. Wakade CG, Mahadik SP, Waller JL, Chiu FC (2002) Atypical neuroleptics stimulate neurogenesis in adult rat brain. J Neurosci Res 69:72–79

    Article  CAS  PubMed  Google Scholar 

  76. Kodama M, Fujioka T, Duman RS (2004) Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 56:570–580

    Article  CAS  PubMed  Google Scholar 

  77. Chen Z, Xu H, Haimano S, Li X, Li XM (2005) Quetiapine and venlafaxine synergically regulate heme oxygenase-2 protein expression in the hippocampus of stressed rats. Neurosci Lett 389:173–177

    Article  CAS  PubMed  Google Scholar 

  78. Luo C, Xu H, Li XM (2005) Quetiapine reverses the suppression of hippocampal neurogenesis caused by repeated restraint stress. Brain Res 1063:32–39

    Article  CAS  PubMed  Google Scholar 

  79. Csernansky JG, Martin MV, Czeisler B, Meltzer MA, Ali Z, Dong H (2006) Neuroprotective effects of olanzapine in a rat model of neurodevelopment injury. Pharmacol Biochem Behav 83:208–213

    Article  CAS  PubMed  Google Scholar 

  80. Xu H, Chen Z, He J, Haimanot S, Li X, Dyck L, Li XM (2006) Synergetic effects of quetiapine and venlafaxine in preventing the chronic restraint stress-induced decrease in cell proliferation and BDNF expression in rat hippocampus. Hippocampus 16:551–559

    Article  CAS  PubMed  Google Scholar 

  81. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    CAS  PubMed  Google Scholar 

  82. Lipska BK (2004) Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci 29:282–289

    PubMed  Google Scholar 

  83. Brisch R, Bernstein H-G, Stauch R, Dobrowolny H, Krell D, Truebner K, Meyer-Lotz G, Bielau H, Steiner J, Kropf S, Gos T, Danos P, Bogerts B (2008) The volumes of the fornix in schizophrenia and affective disorders: A post-mortem study. Psychiatry Res 164:265–273

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Stanley Foundation and NBL-3/BMBF (Förderkennzeichen 01ZZ0407).

Conflict of interest statement

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Brisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brisch, R., Bernstein, HG., Dobrowolny, H. et al. A morphometric analysis of the septal nuclei in schizophrenia and affective disorders: reduced neuronal density in the lateral septal nucleus in bipolar disorder. Eur Arch Psychiatry Clin Neurosci 261, 47–58 (2011). https://doi.org/10.1007/s00406-010-0119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-010-0119-9

Keywords

Navigation