Skip to main content
Log in

Radiological and audiological predictors of stapes destruction in adherent pars tensa

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Progressive adherent pars tensa occasionally induces ossicular erosion. Specifically, stapes discontinuity adversely affects postoperative hearing. However, this irretrievable sequela is challenging to prove preoperatively, partly because perimatrix inflammation on the pars tensa can obscure the visibility of the ossicles or the partial volume effect of computed tomography (CT) imaging can hamper detailed ossicular visualization. Therefore, there is no consensus regarding the ideal timing for switching from a wait-and-see approach to a surgical one. Herein, we aimed to explore the potential predictors of stapes superstructure destruction in adherent pars tensa.

Methods

This retrospective cohort study enrolled consecutive patients who underwent primary tympanoplasty for adherent pars tensa categorized as grade IV on Sadé’s grading scale between April 2016 and September 2021. The impact of features on otoscopy and CT and air–bone gap (ABG) on stapes superstructure destruction was assessed using uni- and multivariable logistic regression analyses.

Results

Sixty-four ears were included. Multivariate analysis revealed the presence of debris on the adherent pars tensa (odds ratio [OR] [95% confidence interval {CI}]): 4.799 [1.063–21.668], p = 0.0415), presence of soft-tissue density occupying the oval window (OR [95% CI]: 13.876 [3.084–62.437], p = 0.0006), and a ≥ 20-dB preoperative ABG at 3 kHz (OR [95% CI]: 7.595 [1.596–36.132], p = 0.0108) as independent predictors for stapes superstructure destruction.

Conclusion

High preoperative awareness of the possibility of destruction of the stapes superstructure would enable the surgeon to make a timely decision to provide surgical intervention before progression to severe stapes destruction, thereby maintaining long-term satisfactory hearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available owing to privacy or ethical restrictions.

References

  1. Stangerup SE, Tos M, Arnesen R, Larsen P (1994) A cohort study of point prevalence of eardrum pathology in children and teenagers from age 5 to age 16. Eur Arch Otorhinolaryngol 251:399–403. https://doi.org/10.1007/BF00181965

    Article  CAS  PubMed  Google Scholar 

  2. Maw AR, Hall AJ, Pothier DD, Gregory SP, Steer CD (2011) The prevalence of tympanic membrane and related middle ear pathology in children: a large longitudinal cohort study followed from birth to age ten. Otol Neurotol 32:1256–1261. https://doi.org/10.1097/MAO.0b013e31822f10cf

    Article  PubMed  Google Scholar 

  3. Sadé J, Avraham S, Brown M (1981) Atelectasis retraction pockets and cholesteatoma. Acta Otolaryngol 92:501–512

    Article  PubMed  Google Scholar 

  4. Tos M, Stangerup SE, Larsen P (1987) Dynamics of eardrum changes following secretory otitis. Arch Otolaryngol Head Neck Surg 113:380–385. https://doi.org/10.1001/archotol.1987.01860040042014

    Article  CAS  PubMed  Google Scholar 

  5. Tos M (1993) Manual of middle ear surgery, vol 1. Thieme, New York, pp 128–132

    Google Scholar 

  6. Charachon R, Barthez M, Lejeune JM (1992) Spontaneous retraction pockets in chronic otitis media medical and surgical therapy. Ear Nose Throat J 71:578–583

    Article  CAS  PubMed  Google Scholar 

  7. Bayoumy AB, Veugen CCAFM, Rijssen LB, Yung M, Bok JM (2021) The natural course of tympanic membrane retractions in the posterosuperior quadrant of pars tensa: a watchful waiting policy. Otol Neurotol 42:e50–e59. https://doi.org/10.1097/MAO.0000000000002834

    Article  PubMed  Google Scholar 

  8. Parkes W, Vilchez-Madrigal L, Cushing S, Papsin B, James A (2018) Natural history of tympanic membrane retraction in children with cleft palate. J Int Adv Otol 14:250–254. https://doi.org/10.5152/iao.2018.5609

    Article  PubMed  PubMed Central  Google Scholar 

  9. Borgstein J, Gerritsma TV, Bruce IA (2008) Erosion of the incus in pediatric posterior tympanic membrane retraction pockets without cholesteatoma. Int J Ped Otorhinolaryngol 72:1419–1423. https://doi.org/10.1016/j.ijporl.2008.06.004

    Article  CAS  Google Scholar 

  10. Bayoumy AB, Veugen CCAFM, van der Veen EL, Bok JM, de Ru JA, Thomeer HGXM (2022) Management of tympanic membrane retractions: a systematic review. Eur Arch Otorhinolaryngol 279:723–737. https://doi.org/10.1007/s00405-021-06719-3

    Article  PubMed  Google Scholar 

  11. Wiatr A, Swiezy K, Skladzien J (2021) Scanning electron microscopy in the evaluation of defects to the ossicular chain in the course of chronic otitis media. Ear Nose Throat J 100:NP248–NP255. https://doi.org/10.1177/0145561319873913

    Article  PubMed  Google Scholar 

  12. Couloigner V, Molony N, Viala P, Contencin P, Narcy P, Van Den Abbeele T (2003) Cartilage tympanoplasty for posterosuperior retraction pockets of the pars tensa in children. Otol Neurotol 24:264–269. https://doi.org/10.1097/00129492-200303000-00022

    Article  PubMed  Google Scholar 

  13. Dornelles C, Schmidt Rosito LP, Meurer L, da Costa SS, Argenta A, Alves SL (2007) Hystology findings’ correlation between the ossicular chain in the transoperative and cholesteatomas. Braz J Otorhinolaryngol 73:738–743. https://doi.org/10.1016/S1808-8694(15)31169-1

    Article  PubMed  Google Scholar 

  14. Dornelles C, Meurer L, Selaimen da Costa S, Schweiger C (2006) Histologic description of acquired cholesteatomas: comparison between children and adults. Braz J Otorhinolaryngol 72:641–648. https://doi.org/10.1016/s1808-8694(15)31020-x

    Article  PubMed  Google Scholar 

  15. Borgstein J, Gerritsma TV, Wieringa MH, Bruce IA (2007) The Erasmus atelectasis classification: proposal of a new classification for atelectasis of the middle ear. Laryngoscope 117:1255–1259. https://doi.org/10.1097/MLG.0b013e31805d0160

    Article  PubMed  Google Scholar 

  16. James AL, Papsin BC, Trimble K, Ramsden J, Sanjeevan N, Bailie N, Chadha NK (2012) Tympanic membrane retraction: an endoscopic evaluation of staging systems. Laryngoscope 122:1115–1120. https://doi.org/10.1002/lary.23203

    Article  PubMed  Google Scholar 

  17. Schlemmer K, Qingsong L, Linder T (2021) Tympanoplasty with an intact stapes superstructure in chronic otitis media. J Int Adv Otol 17:282–287. https://doi.org/10.5152/iao.2021.9267

    Article  PubMed  PubMed Central  Google Scholar 

  18. Potsangbam DS, Akoijam BA (2019) Endoscopic transcanal autologous cartilage ossiculoplasty. Indian J Otolaryngol Head Neck Surg 71:54–59. https://doi.org/10.1007/s12070-018-1518-x

    Article  PubMed  Google Scholar 

  19. Yu H, He Y, Ni Y, Wang Y, Lu N, Li H (2013) PORP vs. TORP: a meta-analysis. Eur Arch Otorhinolaryngol 270:3005–3017. https://doi.org/10.1007/s00405-013-2388-1

    Article  PubMed  Google Scholar 

  20. Lailach S, Zahnert T, Lasurashvili N, Kemper M, Beleites T, Neudert M (2016) Hearing outcome after sequential cholesteatoma surgery. Eur Arch Otorhinolaryngol 273:2035–2046. https://doi.org/10.1007/s00405-015-3767-6

    Article  PubMed  Google Scholar 

  21. Boroń A, Wiatr A, Składzień J, Wiatr M (2019) The effect of preserved stapedial superstructure on hearing improvement. Otolaryngol Pol 74:1–5. https://doi.org/10.5604/01.3001.0013.5954

    Article  PubMed  Google Scholar 

  22. Tono T, Sakagami M, Kojima H, Yamamoto Y, Matsuda K, Komori M, Hato N, Morita Y, Hashimoto S (2017) Staging and classification criteria for middle ear cholesteatoma proposed by the Japan Otological Society. Auris Nasus Larynx 44:135–140. https://doi.org/10.1016/j.anl.2016.06.012

    Article  PubMed  Google Scholar 

  23. Yung M, Tono T, Olszewska E, Yamamoto Y, Sudhoff H, Sakagami M, Mulder J, Kojima H, İncesulu A, Trabalzini F, Özgirgin N (2017) EAONO/JOS Joint consensus statements on the definitions, classification and staging of middle ear cholesteatoma. J Int Adv Otol 13:1–8. https://doi.org/10.5152/iao.2017.3363

    Article  PubMed  Google Scholar 

  24. American Academy of Otolaryngology-Head and Neck Surgery Foundation Inc (1995) Committee on hearing and equilibrium guidelines for the evaluation of results of treatment of conductive hearing loss. Otolaryngol Head Neck Surg 113(3):186–187. https://doi.org/10.1016/S0194-5998(95)70103-6

    Article  Google Scholar 

  25. Jeng FC, Tsai MH, Brown CJ (2003) Relationship of preoperative findings and ossicular discontinuity in chronic otitis media. Otol Neurotol 24:29–32. https://doi.org/10.1097/00129492-200301000-00007

    Article  PubMed  Google Scholar 

  26. Motegi M, Yamamoto Y, Akutsu T, Tada T, Kurihara S, Takahashi M, Sampei S, Morino T, Yamamoto K, Sakurai Y, Kojima H (2022) Radiological and audiological prediction for ossicular fixation in chronic otitis media and tympanic membrane perforation. Otol Neurotol 43:80–89. https://doi.org/10.1097/MAO.0000000000003346

    Article  PubMed  Google Scholar 

  27. Kaffenberger TM, Govil N, Shaffer AD, Chi DH (2018) The effect of preserved stapedial superstructure on hearing improvement. Otol Neurotol 39:724–731

    Article  PubMed  Google Scholar 

  28. Black B (1992) Ossiculoplasty prognosis: the SPITE method of assessment. Am J Otol 13:544–551

    CAS  PubMed  Google Scholar 

  29. Nankivell PC, Pothier DD (2010) Surgery for tympanic membrane retraction pockets. Cochrane Database Syst Rev (7):CD007943

  30. Thomsen J, Bretlau P, Jorgensen MB (1981) Bone resorption in chronic otitis media: the role of cholesteatoma: a must or an adjunct? Clin Otolaryngol 6:179–186. https://doi.org/10.1111/j.1365-2273.1981.tb01529.x

    Article  CAS  PubMed  Google Scholar 

  31. Falk B, Magnuson B (1984) Evacuation of the middle ear by sniffing: a cause of high negative pressure and development of middle ear disease. Otolaryngol Head Neck Surg 92:312–318. https://doi.org/10.1177/019459988409200313

    Article  CAS  PubMed  Google Scholar 

  32. Magnuson B, Falk B (1983) Eustachian tube malfunction and middle ear disease in new perspective. J Otolaryngol 12:187–193

    CAS  PubMed  Google Scholar 

  33. Lindeman P, Holmquist J (1987) Mastoid volume and eustachian tube function in ears with cholesteatoma. Am J Otol 8:5–7

    CAS  PubMed  Google Scholar 

  34. Scott-Brown GG, Kerr AG (1997) Scott-Brown’s otolaryngology, 6th edn. Butterworth-Heinemann, London, pp 1–37

    Google Scholar 

  35. Lampikoski H, Aarnisalo AA, Jero J, Kinnari TJ (2012) Mastoid biofilm in chronic otitis media. Otol Neurotol 33:785–788. https://doi.org/10.1097/MAO.0b013e318259533f

    Article  PubMed  Google Scholar 

  36. Chole RA, Faddis BT (2002) Evidence for microbial biofilms in cholesteatomas. Arch Otolaryngol Head Neck Surg 128:1129–1133. https://doi.org/10.1001/archotol.128.10.1129

    Article  PubMed  Google Scholar 

  37. Suda K, WooTakami JTM, Sexton PM, Nagai K (2002) Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF-alpha, IL-1, and RANKL. J Cell Physiol 190:101–108. https://doi.org/10.1002/jcp.10041

    Article  CAS  PubMed  Google Scholar 

  38. Zou W, Bar-Shavit Z (2002) Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Mineral Res 17:1211–1218. https://doi.org/10.1359/jbmr.2002.17.7.1211

    Article  CAS  Google Scholar 

  39. Peek FA, Huisman MA, Berckmans RJ, Sturk A, Van Loon J, Grote JJ (2003) Lipopolysaccharide concentration and bone resorption in cholesteatoma. Otol Neurotol 24:709–713. https://doi.org/10.1097/00129492-200309000-00002

    Article  CAS  PubMed  Google Scholar 

  40. Nason R, Jung JY, Chole RA (2009) Lipopolysaccharide-induced osteoclastogenesis from mononuclear precursors: a mechanism for osteolysis in chronic otitis. J Assoc Res Otolaryngol 10:151–160. https://doi.org/10.1007/s10162-008-0153-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Swartz JD, Varghese S (1984) Pars flaccida cholesteatoma as demonstrated by computed tomography. Arch Otolaryngol 110:515–517. https://doi.org/10.1001/archotol.1984.00800340027006

    Article  CAS  PubMed  Google Scholar 

  42. Swartz JD, Goodman RS, Russell KB, Ladenheim SE, Wolfson RJ (1983) High-resolution computed tomography of the middle ear and mastoid. Part III: surgically altered anatomy and pathology. Radiology 148:461–464. https://doi.org/10.1148/radiology.148.2.6867343

    Article  CAS  PubMed  Google Scholar 

  43. Jackler RK, Santa Maria PL, Varsak YK, Nguyen A, Blevins NH (2015) A new theory on the pathogenesis of acquired cholesteatoma: mucosal traction. Laryngoscope 125:S1–S14. https://doi.org/10.1002/lary.25261

    Article  PubMed  Google Scholar 

  44. Carrillo RJ, Yang NW, Abes GT (2007) Probabilities of ossicular discontinuity in chronic suppurative otitis media using pure-tone audiometry. Otol Neurotol 28:1034–1037. https://doi.org/10.1097/MAO.0b013e31815882a6

    Article  PubMed  Google Scholar 

  45. Sarmento KMA Jr, Sampaio ALL, Santos TGT, Oliveira CACP (2017) High-frequency conductive hearing loss as a diagnostic test for incomplete ossicular discontinuity in non-cholesteatomatous chronic suppurative otitis media. PLoS ONE 12:e0189997. https://doi.org/10.1371/journal.pone.0189997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Concept: MM; design: NI and MM; supervision: YY and HK; resource: TN, SK, MT, and KY; materials: NI and MH; data collection and/or processing: NI and MM; analysis and/or interpretation: MM; literature search: NI and MM; writing: NI and MM: critical reviews: MM and YS.

Corresponding author

Correspondence to Masaomi Motegi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors alone are responsible for the content and writing of the manuscript.

Ethical approval

Approval was obtained from the institutional review board of The Jikei University School of Medicine (approval number: 32-205[10286]). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate

The requirement for informed consent was waived owing to the retrospective nature of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishibashi, N., Motegi, M., Yamamoto, Y. et al. Radiological and audiological predictors of stapes destruction in adherent pars tensa. Eur Arch Otorhinolaryngol 280, 3615–3624 (2023). https://doi.org/10.1007/s00405-023-07873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-07873-6

Keywords

Navigation