Skip to main content

Advertisement

Log in

Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Cisplatin is a highly effective chemotherapeutic agent but displays significant ototoxic side effects. The most prominent change seen in the cochlea after cisplatin administration consists of loss of outer hair cells. Several mechanisms are believed to mediate cisplatin-induced apoptosis: binding of cisplatin to guanine bases on DNA and the formation of inter- and intra-strand chain cross-linking, generation of reactive oxygen species (ROS) with increased lipid peroxidation and Ca2+ influx and, finally, inflammation mediated by cisplatin. The aim of the present review is to analyze the role of ROS in the mechanisms causing cisplatin-mediated apoptosis in the inner ear and the contribution of the different pathways involved, emphasizing the main strategies to blockade events leading to apoptosis of cochlear cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

STAT1:

Signal transducer and activator of transcription-1

TRPV1:

Transient receptor vanilloid-1

siRNA:

Short interfering RNA

ROS:

Reactive oxygen species

NOX3:

NADPH nicotinamide adenine dinucleotide phosphate oxidase isoform, nitro-l-arginine methyl ester

IL-1β:

Interleukin-1β

TNF-α:

Tumor necrosis factor-α

HSP70:

Heat shock protein 70

HSP32:

Heat shock protein 32

HO-1:

Heme oxygenase-1

iNOS:

Inducible nitric oxide synthase

NF-kβ:

Nuclear factor-kβ

COX-2:

Cyclooxygenase-2

TRAIL:

TNF-related apoptosis-inducing ligand

Cyt-c :

Cytochrome c

AIF:

Apoptosis-inducing factor

PARP:

Poly (ADP-ribose) polymerase

JNK-c:

Jun N-terminal kinase

RIP1:

Kinase receptor interacting protein-1

TRAF2:

TNF receptor-associated factor-2

SOD:

Superoxide dismutase

GSH:

Glutathione

AP1:

Transcription activator protein-1

References

  1. Estrem SA, Babin RW, Ryu JH, Moore KC (1981) Cis-diamminedichloroplatinum (II) ototoxicity in the guinea pig. Otolaryngol Head Neck Surg 89:638–645

    PubMed  CAS  Google Scholar 

  2. Anniko M, Sobin A (1986) Cisplatin: evaluation of its ototoxic potential. Am J Otol 7:276–293

    Article  CAS  Google Scholar 

  3. Watanabe K, Yagi T (2000) Expression of myeloperoxidase in the inner ear of cisplatin-treated guinea pigs. Anticancer Drugs 11:727–730

    Article  PubMed  CAS  Google Scholar 

  4. Lee JE, Nagakawa T, Kita T, Kim TS, Iguchi F, Endo T, Shiga A, Lee SH, Ito J (2004) Mechanisms of apoptosis induced by cisplatin in marginal cells in mouse stria vascularis. ORL J Otorhinolaryngol Relat Spec 66:111–118

    Article  PubMed  CAS  Google Scholar 

  5. Ramírez-Camacho R, García-Berrocal JR, Trinidad A, González-García JA, Verdaguer JM, Ibáñez A, Rodríguez A, Sanz R (2006) Central role of supporting cells in cochlear homeostasis and pathology. Med Hypotheses 67:550–555

    Article  PubMed  Google Scholar 

  6. McKeage MJ (1995) Comparative adverse effect profiles of platinum drugs. Drug Saf 13:228–244

    Article  PubMed  CAS  Google Scholar 

  7. Ashkenazi A, Dixit VM (1998) Death receptors: signalling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  8. Harris MH, Thompson CB (2000) The role of Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7:1182–1191

    Article  PubMed  CAS  Google Scholar 

  9. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol 2:156–162

    Article  PubMed  CAS  Google Scholar 

  10. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of Bid by caspase 8 mediated the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  11. Thomas JP, Lautermann J, Liedert B, Seller F, Thomale J (2006) High accumulation of platinum-DNA adducts in strial marginal cells of the cochlea is an early event in cisplatin but not in carboplatin ototoxicity. Mol Pharmacol 70:23–29

    PubMed  CAS  Google Scholar 

  12. Liang F, Schulte BA, Qu C, Hu W, Shen Z (2005) Inhibition of the calcium and voltage-dependent big conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament fibrocytes of the cochlea. Neuroscience 135:263–271

    Article  PubMed  CAS  Google Scholar 

  13. Watanabe K, Hess A, Bloch W, Michel O (2000) Nitric oxide synthase inhibitor suppresses the ototoxic side effects of cisplatin in guinea pigs. Anticancer Drugs 11:401–406

    Article  PubMed  CAS  Google Scholar 

  14. Mukherjea D, Kaur T, Jajoo S, Sheehan KE, Ramkumar V, Rybak LP (2010) Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antiox Redox Signal 13(5):589–598

    Article  CAS  Google Scholar 

  15. Rybak LP, Husain K, Whitworth C, Somani SM (1999) Dose dependent protection by lipoic acid against cisplatin ototoxicity in rats: antioxidant defense system. Toxicol Sci 47:195–202

    Article  PubMed  CAS  Google Scholar 

  16. Rybak LP (2007) Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg 15:364–369

    Article  PubMed  Google Scholar 

  17. González-García JA, Nevado J, García-Berrocal JR, Sánchez-Rodríguez C, Sanz R, Ramírez-Camacho R (2010) Endogenous protection against oxidative stress caused by cisplatin: role of superoxide dismutase. Acta Otolaryngol 130:453–457

    Article  PubMed  Google Scholar 

  18. Mukherjea D, Jajoo S, Whitworth C, Bunch JR, Turner JG, Rybak LP, Ramkumar B (2008) Short interfering (si)RNA against transient receptor potential Vanilloid-1 (TRPV1) attenuates cisplatin-induced hearing loss in the rat. J Neurosci 28(49):13056–13065

    Article  PubMed  CAS  Google Scholar 

  19. Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226(1–2):157–167

    Article  PubMed  CAS  Google Scholar 

  20. Xu Y, Huang S, Liu ZG, Han J (2006) Poly (ADP-ribose) polymerase-1 signalling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 281(13):8788–8795

    Article  PubMed  CAS  Google Scholar 

  21. Francis SP, Kramarenko II, Brandon CS, Lee FS, Baker TG, Cunningham LL (2011) Celastrol inhibits aminoglycoside-induced ototoxicity via heat shock protein 32. Cell Death Dis 2:e195

    Article  PubMed  CAS  Google Scholar 

  22. Kim HJ, So HS, Lee JH, Park C, Park SY, Kim YH, Youn MJ, Kim SJ, Chung SY, Lee KM, Park R (2006) Heme oxygenase-1 attenuates the cisplatin-induced apoptosis of auditory cells via down-regulation of reactive oxygen species generation. Free Radic Biol Med 40:1810–1819

    Article  PubMed  CAS  Google Scholar 

  23. Choi BM, Chen XY, Gao SS, Zhu R, Kim BR (2011) Anti-apoptotic effect of phloretin on cisplatin-induced apoptosis in HEI-OC1 auditory cells. Pharmacol Rep 63(3):708–716

    PubMed  CAS  Google Scholar 

  24. Cunningham LL, Brandon CS (2006) Heat shock inhibits both aminoglycoside- and cisplatin induced sensory hair cell death. J Assoc Res Otolaryngol 7:299–307

    Article  PubMed  Google Scholar 

  25. García-Berrocal JR, Nevado J, González-García JA, Sánchez-Rodríguez C, Sanz R, Trinidad A, España P, Citores MJ, Ramírez-Camacho R (2010) Heat shock protein 70 and cellular disturbances in cochlear cisplatin ototoxicity model. J Laryngol Otol 124:599–609

    Article  PubMed  Google Scholar 

  26. García-Berrocal JR, Nevado J, Ramírez-Camacho R, Sanz R, González-García JA, Sánchez-Rodríguez C, Cantos B, España P, Verdaguer JM, Trinidad Cabezas A (2007) Antitumoral drug cisplatin induces an intrinsic apoptotic pathway inside the inner ear. British J Pharmacol 152:1012–1020

    Article  Google Scholar 

  27. Wang J, Ladrech S, Pujol R, Brabet P, Van de Water RT, Puel JL (2004) Caspase inhibitors, but not c-Jun NH-N-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 64:9217–9224

    Google Scholar 

  28. Jeong HJ, Choi Y, Kim MH, Kang IC, Lee JH, Park C, Park R, Kim HM (2011) Rosmarinic acid, active component of Dansam-Eum attenuates ototoxicity of cochlear hair cells through blockage of caspase-1 activity. PLoS ONE 6(4):e18815

    Article  PubMed  CAS  Google Scholar 

  29. So H, Kim H, Kim Y, Kim E, Pae HO, Chung HT, Kim HJ, Kwon KB, Lee KM, Lee HY, Moon SK, Park R (2008) Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J Assoc Res Otolaryngol 9:290–306

    Article  PubMed  Google Scholar 

  30. Watanabe K, Inai S, Jinnouchi K, Bada S, Hess A, Michel O, Yagi T (2002) Nuclear-factor kappa B (NF-kB)-inducible nitric oxide synthase (iNOS/NOS II) pathway damages the stria vascularis in cisplatin-treated mice. Anticancer Res 22:4081–4085

    PubMed  CAS  Google Scholar 

  31. So H, Kim H, Lee JH, Park C, Kim Y, Kim E, Kim JK, Yun KJ, Lee KM, Lee HY, Moon SK, Lim DJ, Park R (2007) Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kB. J Assoc Res Otolaryngol 8:338–355

    Article  PubMed  Google Scholar 

  32. Kaur T, Mukherjea D, Sheehan K, Jajoo S, Rybak LP, Ramkumar V (2011) Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis 2:e180

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almudena Trinidad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casares, C., Ramírez-Camacho, R., Trinidad, A. et al. Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models. Eur Arch Otorhinolaryngol 269, 2455–2459 (2012). https://doi.org/10.1007/s00405-012-2029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-012-2029-0

Keywords

Navigation