Skip to main content
Log in

Artifacts of the electrode in cochlea implantation and limits in analysis of deep insertion in cone beam tomography (CBT)

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Until now more than 250,000 cochlea implantations have been performed worldwide. The surgical procedure is well standardized. A discussion about the kind of postoperative radiological control has started since cone beam tomography (CBT) has been established in ENT and hearing preservation operations have come more into the focus. Further research has been concentrated on the role of CBT and the insertion of the basal turn. The aim of this study was to look for the possibilities of CBT and deep insertion. The second aim was to analyze the artifacts of cochlea implants in CBT. Three human cadaver ears were implanted with a flex soft electrode of MedEl© in a standard operation procedure with round window insertion and a full insertion. Afterwards 72 CBT sets per ear were performed with different X-ray-tube currents (2–10 mA), voltages (72–90 kV), and exposure times (9 and 17 s). On each data set, the radiological diameter of the electrode 9 (basal), electrode 2 (apical), the diameter of the cable next to the electrodes 9 and 2, and the associated diameter of the cochlea next to the electrodes 9 and 2 were evaluated. Additionally, a comparison to the real diameter was done. The mean radiological diameters of the measure point at electrode 9 were: electrode = 1.19 mm; cable = 0.65 mm; cochlea = 1.77 mm. Results for measure point at electrode 2 were: electrode = 0.98 mm; cable = 0.48 mm; cochlea = 1.21 mm. The real diameters were at electrode 9 in lateral view 0.58 mm and in top view 0.63 mm and at electrode 2 in lateral view 0.36 mm and in top view 0.50 mm. Differences between the diameters of the electrode 9 and 2 were highly significant. Interestingly, the real diameter of the electrode is half in comparison to the radiological one. Also in comparison to the diameter of the cable and the associated electrode is nearly half. Nearly 50% artifact exists on radiologic evaluation of the diameter of the electrode. Varying the X-ray adjustments did not lead to optimized results. The difficulties in evaluating a cochlea electrode with CBT could be shown. The high rate of artifacts (50%) makes it extremely difficult to predict the inserted scale, especially when evaluating the intracochlear position in the medial and apical turn of the cochlea. In conclusion, until now CBT allows a relatively safe evaluation of the electrode in the basal turn, whereas in deep insertion it is not really a useful tool to answer the question of insertion trauma, implanted scale, or scale displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Verbist BM, Ferrarini L, Briaire JJ, Zarowski A, Admiraal-Behloul F, Olofsen H, Reiber JH, Frijns JH (2009) Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery. Otol Neurotol 30:471–477

    Article  PubMed  Google Scholar 

  2. Connor SE, Bell DJ, O’Gorman R, Fitzgerald-O’Connor A (2009) CT and MR imaging cochlear distance measurements may predict cochlear implant length required for a 360 degrees insertion. AJNR Am J Neuroradiol 30:1425–1430

    Article  PubMed  CAS  Google Scholar 

  3. Dalchow CV, Weber AL, Yanagihara N, Bien S, Werner JA (2006) Digital volume tomography: radiologic examinations of the temporal bone. AJR Am J Roentgenol 186:416–423

    Article  PubMed  Google Scholar 

  4. Savvateeva DM, Güldner C, Murthum T, Bien S, Teymoortash A, Werner JA, Bremke M (2010) Digital volume tomography (DVT) measurements of the olfactory cleft and olfactory fossa. Acta Otolaryngol 130:398–404

    Article  PubMed  Google Scholar 

  5. Güldner C, Diogo I, Windfuhr J, Bien S, Teymoortash A, Werner JA, Bremke M (2011) Analysis of the fossa olfactoria using cone beam tomography (CBT). Acta Otolaryngol 131:72–78

    Article  PubMed  Google Scholar 

  6. Carelsen B, Grolman W, Tange R, Streekstra GJ, van Kemenade P, Jansen RJ, Freling NJ, White M, Maat B, Fokkens WJ (2007) Cochlear implant electrode array insertion monitoring with intra-operative 3D rotational X-ray. Clin Otolaryngol 32:46–50

    Article  PubMed  CAS  Google Scholar 

  7. Kurzweg T, Dalchow CV, Bremke M, Majdani O, Kureck I, Knecht R, Werner JA, Teymoortash A (2011) The value of digital volume tomography in assessing the position of cochlear implant arrays in temporal bone specimens. Ear Hear 31:413–419

    Article  Google Scholar 

  8. Aschendorff A, Kromeier J, Klenzner T, Laszig R (2007) Quality control after insertion of the nucleus contour and contour advance electrode in adults. Ear Hear 28:75S–79S

    Article  PubMed  Google Scholar 

  9. Dalchow CV, Weber AL, Bien S, Yanagihara N, Werner JA (2006) Value of digital volume tomography in patients with conductive hearing loss. Eur Arch Otorhinolaryngol 263:92–99

    Article  PubMed  CAS  Google Scholar 

  10. Peltonen LI, Aarnisalo AA, Kaser Y, Kortesniemi MK, Robinson S, Suomalainen A, Jero J (2009) Cone-beam computed tomography: a new method for imaging of the temporal bone. Acta Radiol 50:543–548

    Article  PubMed  CAS  Google Scholar 

  11. Offergeld C, Kromeier J, Aschendorff A, Maier W, Klenzner T, Beleites T, Zahnert T, Schipper J, Laszig R (2007) Rotational tomography of the normal and reconstructed middle ear in temporal bones: an experimental study. Eur Arch Otorhinolaryngol 264:345–351

    Article  PubMed  Google Scholar 

  12. Schwarz M, Engelhorn T, Eyupoglu IY, Brunner H, Struffert T, Kalender W, Dorfler A (2010) In vivo imaging of MSCT and micro-CT: a comparison. Rofo 182:322–326

    Article  PubMed  CAS  Google Scholar 

  13. Postnov A, Zarowski A, De Clerck N, Vanpoucke F, Offeciers FE, Van Dyck D, Peeters S (2006) High resolution micro-CT scanning as an innovative tool for evaluation of the surgical positioning of cochlear implant electrodes. Acta Otolaryngol 126:467–474

    Article  PubMed  CAS  Google Scholar 

  14. van Wermeskerken GK, Prokop M, van Olphen AF, Albers FW (2007) Intracochlear assessment of electrode position after cochlear implant surgery by means of multislice computer tomography. Eur Arch Otorhinolaryngol 264:1405–1407

    Article  PubMed  Google Scholar 

  15. Aschendorff A, Kubalek R, Hochmuth A, Bink A, Kurtz C, Lohnstein P, Klenzner T, Laszig R (2004) Imaging procedures in cochlear implant patients–evaluation of different radiological techniques. Acta Otolaryngol Suppl 46–49

  16. Lane JI, Driscoll CL, Witte RJ, Primak A, Lindell EP (2007) Scalar localization of the electrode array after cochlear implantation: a cadaveric validation study comparing 64-slice multidetector computed tomography with microcomputed tomography. Otol Neurotol 28:191–194

    Article  PubMed  Google Scholar 

  17. Todt I, Rademacher G, Wagner J, Gopel F, Basta D, Haider E, Ernst A (2009) Evaluation of cochlear implant electrode position after a modified round window insertion by means of a 64-multislice CT. Acta Otolaryngol 129:966–970

    Article  PubMed  Google Scholar 

  18. Struffert T, Hertel V, Kyriakou Y, Krause J, Engelhorn T, Schick B, Iro H, Hornung J, Doerfler A (2010) Imaging of cochlear implant electrode array with flat-detector CT and conventional multislice CT: comparison of image quality and radiation dose. Acta Otolaryngol 130:443–452

    Article  PubMed  Google Scholar 

  19. Bartling SH, Gupta R, Torkos A, Dullin C, Eckhardt G, Lenarz T, Becker H, Stover T (2006) Flat-panel volume computed tomography for cochlear implant electrode array examination in isolated temporal bone specimens. Otol Neurotol 27:491–498

    Article  PubMed  Google Scholar 

  20. Majdani O, Thews K, Bartling S, Leinung M, Dalchow C, Labadie R, Lenarz T, Heidrich G (2009) Temporal bone imaging: comparison of flat panel volume CT and multisection CT. AJNR Am J Neuroradiol 30:1419–1424

    Article  PubMed  CAS  Google Scholar 

  21. Teymoortash A, Hamzei S, Murthum T, Eivazi B, Kureck I, Werner JA (2011) Temporal bone imaging using digital volume tomography and computed tomography: a comparative cadaveric radiological study. Surg Radiol Anat 33:123–128

    Article  PubMed  Google Scholar 

  22. Ruivo J, Mermuys K, Bacher K, Kuhweide R, Offeciers E, Casselman JW (2009) Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation. Otol Neurotol 30:299–303

    Article  PubMed  Google Scholar 

  23. Erixon E, Hogstorp H, Wadin K, Rask-Andersen H (2009) Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol 30:14–22

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Güldner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güldner, C., Wiegand, S., Weiß, R. et al. Artifacts of the electrode in cochlea implantation and limits in analysis of deep insertion in cone beam tomography (CBT). Eur Arch Otorhinolaryngol 269, 767–772 (2012). https://doi.org/10.1007/s00405-011-1719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-011-1719-3

Keywords

Navigation