Skip to main content
Log in

The impact of the microphone position on the frequency analysis of snoring sounds

  • Miscellaneous
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Frequency analysis of snoring sounds has been reported as a diagnostic tool to differentiate between different sources of snoring. Several studies have been published presenting diverging results of the frequency analyses of snoring sounds. Depending on the position of the used microphones, the results of the frequency analysis of snoring sounds vary. The present study investigated the influence of different microphone positions on the outcome of the frequency analysis of snoring sounds. Nocturnal snoring was recorded simultaneously at six positions (air-coupled: 30 cm middle, 100 cm middle, 30 cm lateral to both sides of the patients’ head; body contact: neck and parasternal) in five patients. The used microphones had a flat frequency response and a similar frequency range (10/40 Hz–18 kHz). Frequency analysis was performed by fast Fourier transformation and frequency bands as well as peak intensities (Peaks 1–5) were detected. Air-coupled microphones presented a wider frequency range (60 Hz–10 kHz) compared to contact microphones. The contact microphone at cervical position presented a cut off at frequencies above 300 Hz, whereas the contact microphone at parasternal position revealed a cut off above 100 Hz. On an exemplary base, the study demonstrates that frequencies above 1,000 Hz do appear in complex snoring patterns, and it is emphasised that high frequencies are imported for the interpretation of snoring sounds with respect to the identification of the source of snoring. Contact microphones might be used in screening devices, but for a natural analysis of snoring sounds the use of air-coupled microphones is indispensable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agrawal S, Stone P, McGuinness K, Morris J, Camilleri AE (2002) Sound frequency analysis and the site of snoring in natural and induced sleep. Clin Otolaryngol Allied Sci 27:162–166. doi:10.1046/j.1365-2273.2002.00554.x

    Article  CAS  PubMed  Google Scholar 

  2. Beck R, Odeh M, Oliven A, Gavriely N (1995) The acoustic properties of snores. Eur Respir J 8:2120–2128. doi:10.1183/09031936.95.08122120

    Article  CAS  PubMed  Google Scholar 

  3. Caffier PP, Berl JC, Muggli A, Reinhardt A, Jakob A, Moser M, Fietze I, Scherer H, Holzl M (2007) Snoring noise pollution—the need for objective quantification of annoyance, regulatory guidelines and mandatory therapy for snoring. Physiol Meas 28:25–40. doi:10.1088/0967-3334/28/1/003

    Article  CAS  PubMed  Google Scholar 

  4. Fiz JA, Abad J, Jane R, Riera M, Mananas MA, Caminal P, Rodenstein D, Morera J (1996) Acoustic analysis of snoring sound in patients with simple snoring and obstructive sleep apnoea. Eur Respir J 9:2365–2370. doi:10.1183/09031936.96.09112365

    Article  CAS  PubMed  Google Scholar 

  5. Hara H, Murakami N, Miyauchi Y, Yamashita H (2006) Acoustic analysis of snoring sounds by a multidimensional voice program. Laryngoscope 116:379–381. doi:10.1097/01.mlg.0000195378.08969.fd

    Article  PubMed  Google Scholar 

  6. Herzog M, Schmidt A, Bremert T, Herzog B, Hosemann W, Kaftan H (2008) Analysed snoring sounds correlate to obstructive sleep disordered breathing. Eur Arch Otorhinolaryngol 265:105–113. doi:10.1007/s00405-008-0585-0

    Article  PubMed  Google Scholar 

  7. Hill PD, Lee BW, Osborne JE, Osman EZ (1999) Palatal snoring identified by acoustic crest factor analysis. Physiol Meas 20:167–174. doi:10.1088/0967-3334/20/2/306

    Article  CAS  PubMed  Google Scholar 

  8. Jones TM, Ho MS, Earis JE, Swift AC, Charters P (2006) Acoustic parameters of snoring sound to compare natural snores with snores during ‘steady-state’ propofol sedation. Clin Otolaryngol 31:46–52. doi:10.1111/j.1749-4486.2006.01136.x

    Article  CAS  PubMed  Google Scholar 

  9. Jones TM, Swift AC, Calverley PM, Ho MS, Earis JE (2005) Acoustic analysis of snoring before and after palatal surgery. Eur Respir J 25:1044–1049. doi:10.1183/09031936.05.00101703

    Article  CAS  PubMed  Google Scholar 

  10. Kaniusas E, Pfutzner H, Saletu B (2005) Acoustical signal properties for cardiac/respiratory activity and apneas. IEEE Trans Biomed Eng 52:1812–1822. doi:10.1109/TBME.2005.856294

    Article  PubMed  Google Scholar 

  11. Kraman SS, Wodicka GR, Pressler GA, Pasterkamp H (2006) Comparison of lung sound transducers using a bioacoustic transducer testing system. J Appl Physiol 101:469–476. doi:10.1152/japplphysiol.00273.2006

    Article  PubMed  Google Scholar 

  12. Miyazaki S, Itasaka Y, Ishikawa K, Togawa K (1998) Acoustic analysis of snoring and the site of airway obstruction in sleep related respiratory disorders. Acta Otolaryngol 537:47–51. doi:10.1080/00016489850182350

    Article  CAS  Google Scholar 

  13. Osborne JE, Osman EZ, Hill PD, Lee BV, Sparkes C (1999) A new acoustic method of differentiating palatal from non-palatal snoring. Clin Otolaryngol Allied Sci 24:130–133. doi:10.1046/j.1365-2273.1999.00229.x

    Article  CAS  PubMed  Google Scholar 

  14. Perez-Padilla JR, Slawinski E, Difrancesco LM, Feige RR, Remmers JE, Whitelaw WA (1993) Characteristics of the snoring noise in patients with and without occlusive sleep apnea. Am Rev Respir Dis 147:635–644

    Article  CAS  PubMed  Google Scholar 

  15. Quinn SJ, Huang L, Ellis PD, Williams JE (1996) The differentiation of snoring mechanisms using sound analysis. Clin Otolaryngol Allied Sci 21:119–123. doi:10.1111/j.1365-2273.1996.tb01313.x

    Article  CAS  PubMed  Google Scholar 

  16. Rembold CM, Suratt PM (2004) Children with obstructive sleep-disordered breathing generate high-frequency inspiratory sounds during sleep. Sleep 27:1154–1161

    Article  PubMed  Google Scholar 

  17. Saunders NC, Tassone P, Wood G, Norris A, Harries M, Kotecha B (2004) Is acoustic analysis of snoring an alternative to sleep nasendoscopy? Clin Otolaryngol Allied Sci 29:242–246. doi:10.1111/j.1365-2273.2004.00800.x

    Article  CAS  PubMed  Google Scholar 

  18. Schafer J (1989) How can one recognize a velum snorer? Laryngorhinootologie 68:290–294

    Article  CAS  PubMed  Google Scholar 

  19. Sola-Soler J, Jane R, Fiz JA, Morera J (2007) Automatic classification of subjects with and without sleep apnea through snoring analysis. Conf Proc IEEE Eng Med Biol Soc 1:6093–6096. doi:10.1109/IEMBS.2007.4353739

    Google Scholar 

  20. Sola-Soler J, Jane R, Fiz JA, Morera J (2005) Variability of snore parameters in time and frequency domains in snoring subjects with and without obstructive sleep apnea. Conf Proc IEEE Eng Med Biol Soc 3:2583–2586

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Herzog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, M., Kühnel, T., Bremert, T. et al. The impact of the microphone position on the frequency analysis of snoring sounds. Eur Arch Otorhinolaryngol 266, 1315–1322 (2009). https://doi.org/10.1007/s00405-008-0858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-008-0858-7

Keywords

Navigation