Skip to main content
Log in

Influence of epidemiological characteristics (age, parity and other factors) in the assessment of healthy uterine cervical stiffness evaluated through shear wave elastography as a prior step to its use in uterine cervical pathology

  • Images in Obstetrics and Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate stiffness changes occurring in the healthy uterine cervix according to age, parity, phase of the menstrual cycle and other factors by shear wave elastography (SWE).

Methods

Evaluations of cervical speed and stiffness measurements were performed in 50 non-pregnant patients without gynaecological pathology using SWE transvaginal ultrasound. We performed the evaluation in the midsagittal plane of the uterine cervix with measurements at 0.5, 1 and 1.5 cm from external cervical os, at both anterior and posterior cervical lips.

Results

We evaluated 44 patients by SWE and obtained a total average velocity of 3.48 ± 1.08 m/s and stiffness of 42.39 ± 25.33 kPa. We found differences in speed and stiffness according to the cervical lip and depth evaluated; thus, we observed a velocity of 2.70 m/s at 0.5 cm of depth in the anterior lip and 3.53 m/s at 1.5 cm of depth in the posterior lip (p < 0.05). We observed differences according to parity, obtaining a wave transmission speed of 2.67 m/s and 4.41 m/s at the cervical canal of nulliparous and multiparous patients, respectively (p < 0 0.002). We observed differences according to patient age (from a speed of 2.75 m/s at the cervical canal in the age group of 20–35 years to 5.05 m/s in the age group > 50 years) (p < 0.008). We did not observe differences in speed or stiffness according to the phase of the menstrual cycle, BMI, smoking status or the presence or absence of non-HPV infections.

Conclusions

The wave transmission speed and stiffness of the uterine cervix evaluated by SWE varies according to the cervical lip and depth of the evaluation as well as according to the parity and age of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bakay OA, Golovko TS (2015) Use of elastography for cervical cancer diagnostics. Exp Oncol 37(2):139–145

    CAS  PubMed  Google Scholar 

  2. Ophir J, Alam SK, Garra B et al (1999) Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H 213:203–233

    CAS  PubMed  Google Scholar 

  3. Ophir J, Cespedes I, Ponnekanti H (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134

    CAS  PubMed  Google Scholar 

  4. Parker KJ, Doyley MM, Rubens DJ (2011) Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol 56:1–29

    Google Scholar 

  5. Wilson LS, Robinson DE, Dadd MJ (2000) Elastography—the movement begins. Phys Med Biol 45:1409–1421

    CAS  PubMed  Google Scholar 

  6. Greenleaf JF, Fatemi M, Insana M (2003) Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng 5:57–78

    CAS  PubMed  Google Scholar 

  7. Kishimoto R, Kikuchi K, Koyama A et al (2019) Intra- and inter-operator reproducibility of US point shear-wave elastography in various organs: evaluation in phantoms and healthy volunteers. Eur Radiol 29(11):5999–6008

    PubMed  PubMed Central  Google Scholar 

  8. Wang Q, Guo LH, Li XL et al (2018) Differentiating the acute phase of gout from the intercritical phase with ultrasound and quantitative shear wave elastography. Eur Radiol 28(12):5316–5327

    PubMed  Google Scholar 

  9. Hernandez-Andrade E, Hassan SS, Ahn H et al (2013) Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography. Ultrasound Obstet Gynecol 41:152–161

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350

    PubMed  Google Scholar 

  11. Sebag F, Vaillant-Lombard J, Berbis J et al (2010) Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab 95:5281–5288

    CAS  PubMed  Google Scholar 

  12. Zhang YF, Li H, Wang XM et al (2019) Sonoelastography for differential diagnosis between malignant and benign parotid lesions: a meta-analysis. Eur Radiol 29(2):725–735

    PubMed  Google Scholar 

  13. Alam F, Naito K, Horiguchi J et al (2008) Accuracy of sonographic elastography in the differential diagnosis of enlarged cervical lymph nodes: comparison with conventional B-mode sonography. AJR Am J Roentgenol 191:604–610

    PubMed  Google Scholar 

  14. Xiang LH, Fang Y, Wan J et al (2019) Shear-wave elastography: role in clinically significant prostate cancer with false-negative magnetic resonance imaging. Eur Radiol 29(12):6682–6689

    PubMed  Google Scholar 

  15. Yin Z, Murphy MC, Li J et al (2019) Prediction of nonalcoholic fatty liver disease (NAFLD) activity score (NAS) with multiparametric hepatic magnetic resonance imaging and elastography. Eur Radiol 29(11):5823–5831

    PubMed  Google Scholar 

  16. Ferraioli G, Wong VW, Castera L et al (2018) Liver ultrasound elastography: an update to the world federation for ultrasound in medicine and biology guidelines and recommendation ultrasound. Med Biol 44(12):2419–2440

    Google Scholar 

  17. Gheonea DI, Sa ̆ftoiu A, Ciurea T et al (2010) Real-time sono-elastography in the diagnosis of diffuse liver diseases. World J Gastroenterol 16:1720–1726

    PubMed  PubMed Central  Google Scholar 

  18. Ami O, Lamazou F, Mabille M et al (2009) Real-time transvaginal elastosonography of uterine fibroids. Ultrasound Obstet Gynecol 34:486–488

    CAS  PubMed  Google Scholar 

  19. Swiatkowska-Freund M, Preis K (2011) Elastography of the uterine cervix: implications for success of induction of labor. Ultrasound Obstet Gynecol 38:52–56

    CAS  PubMed  Google Scholar 

  20. Thomas A (2006) Imaging of the cervix using sonoelastography. Ultrasound Obstet Gynecol 28:356–357

    CAS  PubMed  Google Scholar 

  21. Thomas A, Kummel S, Gemeinhardt O et al (2007) Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Acad Radiol 14:193–200

    PubMed  Google Scholar 

  22. Timmons B, Akins M, Mahendroo M (2010) Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab 21:353–361

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ogawa M, Nagao D, Mori K et al (2012) Elastography for differentiation of subchorionic hematoma and placenta previa. Ultrasound Obstet Gynecol 39:112–114

    CAS  PubMed  Google Scholar 

  24. Hobson MA, Kiss MZ, Varghese T et al (2007) In vitro uterine strain imaging: preliminary results. J Ultrasound Med 26:899–908

    PubMed  PubMed Central  Google Scholar 

  25. Gazhonova V, Churkina S, Lukyanova E et al (2008) Clinical application of new method—sonoelastography in gynaecology. Кremlin Med Clin Her 18–23

  26. Ono T, Katsura D, Yamada K et al (2017) Use of ultrasound shear-wave elastography to evaluate change in cervical stiffness during pregnancy. J Obstet Gynaecol Res 43(9):1405–1410

    PubMed  Google Scholar 

  27. Londero AP, Schmitz R, Bertozzi S et al (2016) Diagnostic accuracy of cervical elastography in predicting labor induction success: a systematic review and meta-analysis. J Perinat Med 44(2):167–178

    PubMed  Google Scholar 

  28. Hernandez-Andrade E, Maymon E, Luewan S et al (2018) A soft cervix, categorized by shear-wave elastography, in women with short or with normal cervical length at 18–24 weeks is associated with a higher prevalence of spontaneous preterm delivery. J Perinat Med 46(5):489–501

    PubMed  PubMed Central  Google Scholar 

  29. Leppert PC (1995) Anatomy and physiology of cervical ripening. Clin Obstet Gynecol 38:267–279

    CAS  PubMed  Google Scholar 

  30. Ludmir J, Sehdev HM (2000) Anatomy and physiology of the uterine cervix. Clin Obstet Gynecol 43(3):433–439

    CAS  PubMed  Google Scholar 

  31. Oxlund BS, Ørtoft G, Brüel A et al (2010) Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women. Reprod Biol Endocrinol 6(8):82–86

    Google Scholar 

  32. Joshi SN, Das S, Thakar M et al (2018) Colposcopically observed vascular changes in the cervix in relation to the hormonal levels and menstrual cycle. J Low Genit Tract Dis 12(4):293–299

    Google Scholar 

  33. Matzinger B, Wolf M, Baños A et al (2009) Optical properties, physiologic parameters and tissue composition of the human uterine cervix as a function of hormonal status. Lasers Med Sci 24(4):561–566

    PubMed  Google Scholar 

  34. Thiele M, Detlefsen S, Sevelsted Moller L et al (2016) Transient and 2-dimensional shear-wave elastography provide comparable assessment of alcoholic liver fibrosis and cirrhosis. Gastroenterology 150:123–133

    PubMed  Google Scholar 

  35. O´hara S, Zelesco M, Sun Z (2019) Shear wave elastography on the uterine cervix. Technical development for the transvaginal approach. J Ultrasound Med 38(4):1049–1060

    Google Scholar 

  36. Shiina T, Nightingale KR, Palmeri ML et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 41:1126–1147

    PubMed  Google Scholar 

  37. Xiao H, Shi M, Xie Y, Chi X et al (2017) Comparison of diagnostic accuracy of magnetic resonance elastography and Fibroscan for detecting liver fibrosis in chronic hepatitis B patients: a systematic review and meta-analysis. PLoS ONE 12(11):e0186660

    PubMed  PubMed Central  Google Scholar 

  38. Fruscalzo A, Mazza E, Feltovich H et al (2016) Cervical elastography during pregnancy: a critical review of current approaches with a focus on controversies and limitations. J Med Ultrason 43:493–504

    Google Scholar 

  39. Stanziano A, Caringella AM, Cantatore C et al (2017) Evaluation of the cervix tissue homogeneity by ultrasound elastography in infertile women for the prediction of embryo transfer ease: a diagnostic accuracy study. Reprod Biol Endocrinol 15(1):64

    PubMed  PubMed Central  Google Scholar 

  40. Swierkowski-Blanchard N, Boitrelle F, Alter L et al (2017) Uterine contractility and elastography as prognostic factors for pregnancy after intrauterine insemination. Fertil Steril 107(4):961–968

    PubMed  Google Scholar 

  41. Czuczwar P, Wozniak S, Szkodziak P et al (2016) Elastography improves the diagnostic accuracy of sonography in differentiating endometrial polyps and submucosal fibroids. J Ultrasound Med 35(11):2389–2395

    PubMed  Google Scholar 

  42. Zhang Y, Luo L, Luo Q (2015) Identification of benign and malignant endometrial cancer with transvaginal ultrasonography combined with elastography and tissue hardness analysis. J Biol Regul Homeost Agents 29(4):905–912

    CAS  PubMed  Google Scholar 

  43. Bildaci TB, Cevik H, Yilmaz B et al (2018) Value of in vitro acoustic radiation force impulse application on uterine adenomyosis. J Med Ultrason 45(3):425–430

    Google Scholar 

  44. Marigliano C, Panzironi G, Molisso L et al (2016) First experience of real-time elastography with transvaginal approach in assessing response to MRgFUS treatment of uterine fibroids. Radiol Med 121(12):926–934

    PubMed  Google Scholar 

  45. Lu R, Xiao Y, Liu M et al (2014) Ultrasound elastography in the differential diagnosis of benign and malignant cervical lesions. J Ultrasound Med 33(4):667–671

    PubMed  Google Scholar 

  46. Sun LT, Ning CP, Liu YJ et al (2012) Is transvaginal elastography useful in pre-operative diagnosis of cervical cancer? Eur J Radiol 81(8):e888–e892

    PubMed  Google Scholar 

  47. Xu Y, Zhu L, Wang H et al (2019) Strain elastography as an early predictor of long-term prognosis in patients with locally advanced cervical cancers treated with concurrent chemoradiotherapy. Eur Radiol 30(1):471–481

    PubMed  Google Scholar 

  48. Ma X, Li Q, Wang JL et al (2017) Comparison of elastography based on transvaginal ultrasound and MRI in assessing parametrial invasion of cervical cancer. Clin Hemorheol Microcirc 66(1):27–35

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio García-Mejido.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Biomedical Ethics Committee of Andalucía.

Informed consent

The corresponding author has obtained written patient consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, L., García-Mejido, J.A., Arroyo, E. et al. Influence of epidemiological characteristics (age, parity and other factors) in the assessment of healthy uterine cervical stiffness evaluated through shear wave elastography as a prior step to its use in uterine cervical pathology . Arch Gynecol Obstet 302, 753–762 (2020). https://doi.org/10.1007/s00404-020-05671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-020-05671-7

Navigation