Skip to main content

Advertisement

Log in

Role of sFlt-1/PlGF ratio and feto-maternal Doppler for the prediction of adverse perinatal outcome in late-onset pre-eclampsia

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The sFlt-1 (soluble fms-like tyrosine kinase-1)/PlGF (placental growth factor) ratio and uterine artery Doppler have shown to be helpful in the diagnosis of pre-eclampsia (PE). The predictive value of the cerebroplacental ratio (CPR) regarding adverse perinatal outcome (APO) in low-risk pregnancies is intensively discussed. We evaluated the extent to which sFlt-1/PlGF ratio and feto-maternal Doppler may be useful in predicting APO in singleton pregnancies complicated by late-onset PE and/or HELLP syndrome.

Methods

This is a retrospective study from 2010 to 2018 consisting of singleton pregnancies with confirmed diagnosis of late-onset (lo ≥ 34 weeks) PE/HELLP syndrome in which sFlt-1/PlGF ratio and feto-maternal Doppler (mUtA-PI: mean uterine artery pulsatility index and CPR) were determined. The ability of sFlt-1/PlGF ratio, mUtA-PI, CPR and their combination to predict APO or SGA was evaluated using receiver operating characteristic (ROC) curves.

Results

67 patients were included in the final analysis. Of these, sFlt-1/PlGF was > 110 (defining angiogenic lo PE) in 40.3% (27/67), mUtA-PI was above the 95th centile in 34.3% (23/67) patients and CPR was lower than the 5th centile in 10.4% (7/67). Abnormal sFlt-1/PlGF and mUtA-PI as well as CPR were associated with a lower birth weight (BW). Late-preterm birth (< 37 weeks) as well as postnatal diagnosis of small for gestational age (SGA: BW < 3rd centile) was significantly more often in angiogenic lo PE cases. Neither sFlt-1/PIGF nor CPR or mUtA-PI were APO predictors. Only for sFlt-1/PlGF, ROC analysis revealed a significant predictive value for postnatal SGA (AUC = 0.856, p = 0.001, 95% CI 0.75–0.97). There was no statistical added value of combined SGA predictors as compared to sFlt-1/PlGF alone.

Conclusions

In patients with lo PE, adding sFlt-1/PlGF ratio to routine antepartum fetal surveillance may be useful to identify cases of postnatal SGA. However, further prospective studies are warranted to define the role of feto-maternal Doppler and sFlt-1/PlGF ratio as outcome predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. von Dadelszen P, Magee LA, Roberts JM (2003) Subclassification of preeclampsia. Hypertens Pregnancy 22:143–148

    Google Scholar 

  2. Lisonkova S, Joseph KS (2013) Incidence of preeclampsia: risk factors and outcomes associated with early-versus late-onset disease. Am J Obstet Gynecol 209(544):e1–544.e12

    Google Scholar 

  3. Rana S, Schnettler WT, Powe C, Wenger J, Salahuddin S, Cerdeira AS, Verlohren S, Perschel FH, Arany Z, Lim KH, Thadhani R, Karumanchi SA (2013) Clinical characterization and outcomes of preeclampsia with normal angiogenic profile. Hypertens Pregnancy 32(2):189–201

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rana S, Powe CE, Salahuddin S, Verlohren S, Perschel FH, Levine RJ, Lim KH, Wenger JB, Thadhani R, Karumanchi SA (2012) Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation 125(7):911–919

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang YS, Chen CN, Jeng SF, Su YN, Chen CY, Chou HC, Tsao PN, Hsieh WS (2017) The sFlt-1/PlGF ratio as a predictor for poor pregnancy and neonatal outcomes. Pediatr Neonatol 58(6):529–533

    PubMed  Google Scholar 

  6. Stolz M, Zeisler H, Heinzl F, Binder J, Farr A (2018) An sFlt-1:PlGF ratio of 655 is not a reliable cut-off value for predicting perinatal outcomes in women with preeclampsia. Pregnancy Hypertens 11:54–60

    PubMed  Google Scholar 

  7. Hoffmann J, Ossada V, Weber M, Stepan H (2017) An intermediate sFlt-1/PlGF ratio indicates an increased risk for adverse pregnancy outcome. Pregnancy Hypertens 10:165–170

    PubMed  Google Scholar 

  8. Verlohren S, Herraiz I, Lapaire O, Schlembach D, Moertl M, Zeisler H, Calda P, Holzgreve W, Galindo A, Engels T, Denk B, Stepan H (2012) The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am J Obstet Gynecol 206(58):e1–e8

    Google Scholar 

  9. Gomez-Arriaga PI, Herraiz I, Lopez-Jimenez EA, Escribano D, Denk B, Galindo A (2014) Uterine artery Doppler and sFlt-1/PlGF ratio: prognostic value in early-onset preeclampsia. Ultrasound Obstet Gynecol 43:525–532

    CAS  PubMed  Google Scholar 

  10. Graupner O, Lobmaier SM, Ortiz JU, Karge A, Kuschel B (2018) sFlt-1/PlGF ratio for the prediction of the time of delivery. Arch Gynecol Obstet 298(3):567–577

    CAS  PubMed  Google Scholar 

  11. Stepan H, Herraiz I, Schlembach D, Verlohren S, Brennecke S, Chantraine F, Klein E, Lapaire O, Llurba E, Ramoni A, Vatish M, Wertaschnigg D, Galindo A (2015) Implementation of the sFlt1/PlGF ratio for prediction and diagnosis of preeclampsia in singleton pregnancy: implications for clinical practice. Ultrasound Obstet Gynecol 45:241–246

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Benton SJ, McCowan LM, Heazell AE, Grynspan D, Hutcheon JA, Senger C, Burke O, Chan Y, Harding JE, Yockell-Lelie`vre J, Hu Y, Chappell LC, Griffin MJ, Shennan AH, Magee LA, Gruslin A, von Dadelszen P (2016) Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction. Placenta 42:1–8

    CAS  PubMed  Google Scholar 

  13. Bligh LN, Greer RM, Kumar S (2016) The relationship between maternal placental growth factor levels and intrapartum fetal compromise. Placenta 48:63–67

    CAS  PubMed  Google Scholar 

  14. Bligh LN, Alsolai AA, Greer RM, Kumar S (2018) Prelabor screening for intrapartum fetal compromise in low-risk pregnancies at term: cerebroplacental ratio and placental growth factor. Ultrasound Obstet Gynecol 52(6):750–756

    CAS  PubMed  Google Scholar 

  15. Prior T, Mullins E, Bennett P, Kumar S (2013) Prediction of intrapartum fetal compromise using the cerebroumbilical ratio: a prospective observational study. Am J Obstet Gynecol 208(124):e1–e6

    Google Scholar 

  16. Bligh LN, Alsolai AA, Greer RM, Kumar S (2018) Cerebroplacental ratio thresholds measured within 2 weeks before birth and risk of Cesarean section for intrapartum fetal compromise and adverse neonatal outcome. Ultrasound Obstet Gynecol 52(3):340–346

    CAS  PubMed  Google Scholar 

  17. Khalil AA, Morales-Rosello J, Morlando M, Hannan H, Bhide A, Papageorghiou A, Thilaganathan B (2015) Is fetal cerebroplacental ratio an independent predictor of intrapartum fetal compromise and neonatal unit admission? Am J Obstet Gynecol 213(1):54.e1–54.e10

    Google Scholar 

  18. Morales-Roselló J, Khalil A, Morlando M, Bhide A, Papageorghiou A, Thilaganathan B (2015) Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet Gynecol 45(2):156–161

    PubMed  Google Scholar 

  19. Dunn L, Sherrell H, Kumar S (2017) Review: systematic review of the utility of the fetal cerebroplacental ratio measured at term for the prediction of adverse perinatal outcome. Placenta 54:68–75

    PubMed  Google Scholar 

  20. DeVore GR (2015) The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol 213:5–15

    PubMed  Google Scholar 

  21. Cruz-Martinez R, Figueras F, Hernandez-Andrade E, Oros D, Gratacos E (2011) Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-for-gestational-age fetuses. Obstet Gynecol 117(3):618–626

    PubMed  Google Scholar 

  22. Figueras F, Savchev S, Triunfo S, Crovetto F, Gratacos E (2015) An integrated model with classification criteria to predict small- for-gestational-age fetuses at risk of adverse perinatal outcome. Ultrasound Obstet Gynecol 45:279–285

    CAS  PubMed  Google Scholar 

  23. Alanwar A, El Nour AA, El Mandooh M, Abdelazim IA, Abbas L, Abbas AM, Abdallah A, Nossair WS, Svetlana S (2018) Prognostic accuracy of cerebroplacental ratio for adverse perinatal outcomes in pregnancies complicated with severe pre-eclampsia; a prospective cohort study. Pregnancy Hypertens 14:86–89

    PubMed  Google Scholar 

  24. Ghi T, Youssef A, Piva M, Piva M, Contro E, Segata M, Guasina F, Gabrielli S, Rizzo N, Pelusi G, Pilu G (2009) The prognostic role of uterine artery Doppler studies in patients with late-onset preeclampsia. Am J Obstet Gynecol 201(36):e1–e5

    Google Scholar 

  25. Meler E, Figueras F, Mula R, Crispi F, Benassar M, Gomez O, Gratacos E (2010) Prognostic role of uterine artery Doppler in patients with preeclampsia. Fetal Diagn Ther 27:8–13

    PubMed  Google Scholar 

  26. Rodríguez M, Couve-Pérez C, San Martín S, Martínez F, Lozano C, Sepúlveda-Martínez A (2018) Perinatal outcome and placental apoptosis in patients with late-onset pre-eclampsia and abnormal uterine artery Doppler at diagnosis. Ultrasound Obstet Gynecol 51(6):775–782

    PubMed  Google Scholar 

  27. Broekhuijsen K, van Baaren GJ, van Pampus MG, Ganzevoort W, Sikkema JM, Woiski MD, Oudijk MA, Bloemenkamp KW, Scheepers HC, Bremer HA, Rijnders RJ, van Loon AJ, Perquin DA, Sporken JM, Papatsonis DN, van Huizen ME, Vredevoogd CB, Brons JT, Kaplan M, van Kaam AH, Groen H, Porath MM, van den Berg PP, Mol B, Franssen MT, Langenveld J, HYPITAT-II study group (2015) Immediate delivery versus expectant monitoring for hypertensive disorders of pregnancy between 34 and 37 weeks of gestation (HYPITAT-II): an open-label, randomised controlled trial. Lancet. 385(9986):2492–2501

    PubMed  Google Scholar 

  28. ACOG Committee on Obstetric Practice (2002) ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Int J Gynaecol Obstet 77(1):67–75

    Google Scholar 

  29. American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy (2013) Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol 122(5):1122–1131

    Google Scholar 

  30. Weinstein L (1982) Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. Am J Obstet Gynecol 142:159–167

    CAS  PubMed  Google Scholar 

  31. Figueras F, Gratacos E (2014) Update on the diagnosis and classification of fetal growth restriction and proposal of a stage- based management protocol. Fetal Diagn Ther 36(2):86–98

    PubMed  Google Scholar 

  32. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, Silver RM, Wynia K, Ganzevoort W (2016) Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 48(3):333–339

    CAS  PubMed  Google Scholar 

  33. Graupner O, Ortiz JU, Haller B, Wacker-Gussmann A, Oberhoffer R, Kuschel B, Weyrich J, Lees C, Lobmaier SM (2018) Performance of computerized cardiotocography-based short-term variation in late-onset small-for-gestational-age fetuses and reference ranges for the late third trimester. Arch Gynecol Obstet. https://doi.org/10.1007/s00404-018-4966-3

    Article  PubMed  Google Scholar 

  34. Baschat AA, Gembruch U (2003) The cerebroplacental Doppler ratio revisited. Ultrasound Obstet Gynecol 21(2):124–127

    CAS  PubMed  Google Scholar 

  35. Gómez O, Figueras F, Fernández S, Bennasar M, Martínez JM, Puerto B, Gratacós E (2008) Reference ranges for uterine artery mean pulsatility index at 11–41 weeks of gestation. Ultrasound Obstet Gynecol 32(2):128–132

    PubMed  Google Scholar 

  36. Ayres-de-Campos D, Spong CY, Chandraharan E (2015) FIGO Intrapartum Fetal Monitoring Expert Consensus Panel. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int J Gynaecol Obstet. 131(1):13–24. https://doi.org/10.1016/j.ijgo.2015.06.020

    Article  PubMed  Google Scholar 

  37. Kreße-Chludek P, Pullankavumkal J, Klöckner N, Henrich W, Verlohren S (2018) Der sFlt-1/PlGF-Quotient als Prädiktor für das Auftreten von Präeklampsie-assoziierten Komplikationen. Ultraschall in Med 39:S1–S47. https://doi.org/10.1055/s-0038-1670432

    Article  Google Scholar 

  38. Monaghan C, Binder J, Thilaganathan B, Morales-Roselló J, Khalil A (2018) Perinatal loss at term: role of uteroplacental and fetal Doppler assessment. Ultrasound Obstet Gynecol 52(1):72–77

    CAS  PubMed  Google Scholar 

  39. Sherrell H, Clifton V, Kumar S (2018) Predicting intrapartum fetal compromise at term using the cerebroplacental ratio and placental growth factor levels (PROMISE) study: randomised controlled trial protocol. BMJ Open 8(8):e022567. https://doi.org/10.1136/bmjopen-2018-022567

    Article  PubMed  PubMed Central  Google Scholar 

  40. Figueras F, Gratacos E, Rial M, Gull I, Krofta L, Lubusky M, Cruz-Martinez R, Cruz-Lemini M, Martinez-Rodriguez M, Socias P, Aleuanlli C, Cordero MCP (2017) Revealed versus concealed criteria for placental insufficiency in an unselected obstetric population in late pregnancy (RATIO37): randomised controlled trial study protocol. BMJ Open 7(6):e014835. https://doi.org/10.1136/bmjopen-2016-014835

    Article  PubMed  PubMed Central  Google Scholar 

  41. Verlohren S, Herraiz I, Lapaire O, Schlembach D, Zeisler H, Calda P, Sabria J, Markfeld-Erol F, Galindo A, Schoofs K, Denk B, Stepan H (2014) New gestational phase-specific cutoff values for the use of the soluble fms-like tyrosine kinase-1/placental growth factor ratio as a diagnostic test for preeclampsia. Hypertension 63:346–352

    CAS  PubMed  Google Scholar 

  42. Khalil A, Morales-Roselló J, Townsend R, Morlando M, Papageorghiou A, Bhide A, Thilaganathan B (2016) Value of third-trimester cerebroplacental ratio and uterine artery Doppler indices as predictors of stillbirth and perinatal loss. Ultrasound Obstet Gynecol 47(1):74–80

    CAS  PubMed  Google Scholar 

  43. Gaccioli F, Sovio U, Cook E, Hund M, Charnock-Jones D, Smith GCS (2018) Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women: a prospective cohort study. Lancet Child Adolesc Health. 2(8):569–581

    PubMed  PubMed Central  Google Scholar 

  44. Lobmaier SM, Figueras F, Mercade I, Perello M, Peguero A, Crovetto F, Ortiz JU, Crispi F, Gratacós E (2014) Angiogenic factors vs Doppler surveillance in the prediction of adverse outcome among late-pregnancy small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 43(5):533–540. https://doi.org/10.1002/uog.13246

    Article  CAS  PubMed  Google Scholar 

  45. Khalil A, Morales-Rosello J, Khan N, Nath M, Agarwal P, Bhide A, Papageorghiou A, Thilaganathan B (2017) Is cerebroplacental ratio a marker of impaired fetal growth velocity and adverse pregnancy outcome? Am J Obstet Gynecol 216(6):606.e1–606.e10

    Google Scholar 

  46. Ortiz JU, Ostermayer E, Graupner O, Kuschel B, Lobmaier SM (2018) Cerebro-plazentare Ratio und das Risiko für operative Entbindung am Termin. Ultraschall in Med 39:S1–S47. https://doi.org/10.1055/s-0038-1670433

    Article  Google Scholar 

  47. Sirico A, Diemert A, Glosemeyer P, Hecher K (2018) Prediction of adverse perinatal outcome by cerebroplacental ratio adjusted for estimated fetal weight. Ultrasound Obstet Gynecol 51(3):381–386

    CAS  PubMed  Google Scholar 

  48. Fiolna M, Kostiv V, Anthoulakis C, Akolekar R, Nicolaides KH (2018) Prediction of adverse perinatal outcomes by the cerebroplacental ratio in women undergoing induction of labour. Ultrasound Obstet Gynecol. https://doi.org/10.1002/uog.20173

    Article  Google Scholar 

  49. Akolekar R, Syngelaki A, Gallo DM, Poon LC, Nicolaides KH (2015) Umbilical and fetal middle cerebral artery Doppler at 35–37 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 46(1):82–92

    CAS  PubMed  Google Scholar 

  50. Vollgraff Heidweiller-Schreurs CA, De Boer MA, Heymans MW, Schoonmade LJ, Bossuyt PMM, Mol BWJ, De Groot CJM, Bax CJ (2018) Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis. Ultrasound Obstet Gynecol 51(3):313–322

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

OG: Project development, Data collection, Data analysis, Manuscript writing. AK: Data collection, Manuscript writing. SF: Data collection, Manuscript editing. AS: Data collection, Data analysis, Manuscript editing. BH: Data analysis, Manuscript editing. JUO: Manuscript editing. SML: Manuscript editing. RA-F: Project development, Manuscript editing. CE: Manuscript editing. KA: Manuscript editing. BK: Project development, Data collection, Data analysis, Manuscript editing.

Corresponding author

Correspondence to Oliver Graupner.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graupner, O., Karge, A., Flechsenhar, S. et al. Role of sFlt-1/PlGF ratio and feto-maternal Doppler for the prediction of adverse perinatal outcome in late-onset pre-eclampsia. Arch Gynecol Obstet 301, 375–385 (2020). https://doi.org/10.1007/s00404-019-05365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-019-05365-9

Keywords

Navigation