Skip to main content
Log in

Multi-scale hyperspectral imaging of cervical neoplasia

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

This preliminary study aimed at investigating the feasibility and effective of multi-scale hyperspectral imaging in detecting cervical neoplasia at both tissue and cellular levels.

Methods

In this paper, we describe a noninvasive diagnosis method with a hyperspectral imager for detection and location of cervical intraepithelial neoplasia (CIN) at multiple scales. At the macroscopic level, the hyperspectral imager was applied to capture the reflectance images of the entire cervix in vivo at a series of wavelengths. At the microscopic level, the hyperspectral imager was coupled with a microscope to collect the transmittance images of the pathological slide. The collected image data were calibrated. A wide-gap second derivative analysis was applied to differentiate CIN from other types of tissue.

Results

At both macroscopic and microscopic levels, hyperspectral imaging analysis results were consistent with those of histopathological analysis, indicating the technical feasibility of multi-scale hyperspectral imaging for cervical neoplasia detection with accuracy and efficacy.

Conclusion

We propose a multi-scale hyperspectral imaging method for noninvasive detection of cervical neoplasia. Comparison of the imaging results with those of gold standard histologic measurements demonstrates that the hyperspectral diagnostic imaging system can distinguish CIN at both tissue and cellular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. http://www.chinacdc.cn/mtdx/mxfcrxjbxx/201405/t20140513_96910.htm. Accessed 2014

  2. Walboomers JMM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19. doi:10.1002/(sici)1096-9896(199909)189:1<12:aid-path431>3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  3. Barreto CL, Martins DBG et al (2013) Detection of Human Papillomavirus in biopsies of patients with cervical cancer. Arch Gynecol Obstet 288(3):643–648. doi:10.1007/s00404-013-3042-2

    Article  CAS  PubMed  Google Scholar 

  4. Bosch FX, Manos MM, MunB G et al (1995) Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J Natl Cancer Inst 87:796bste

  5. Orfanoudaki IM, Kappou D, Sifakis S (2011) Recent advances in optical imaging for cervical cancer detection. Arch Gynecol Obstet 284(5):1197–1208. doi:10.1007/s00404-011-2009-4

    Article  PubMed  Google Scholar 

  6. Akbari H, Uto K, Kosugi Y et al (2011) Cancer detection using infrared hyperspectral imaging. Cancer Sci 102:852–857. doi:10.1111/j.1349-7006.2011.01849.x

    Article  CAS  PubMed  Google Scholar 

  7. Roblyer D, Kurachi C, Gillenwater AM et al (2009) In vivo fluorescence hyperspectral imaging of oral neoplasia. Proc SPIE 7169, 71690J-1–10

    Google Scholar 

  8. Gustafsson UP, McLaughlin E, Jacobsen E et al (2003) In-vivo fluorescence and reflectance imaging of human cervical tissue. Proc SPIE 5031:521–530

    Article  Google Scholar 

  9. Ferris DG, Lawhead RA, Dickman ED et al (2001) Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J Lower Genital Tract Dis 5:65–72. doi:10.1046/j.1526-0976.2001.005002065.x

    CAS  Google Scholar 

  10. Zeng H, Zhao J, Short M et al (2008) Raman spectroscopy for in vivo tissue analysis and diagnosis, from instrument development to clinical applications. J Innov Opt Health Sci 1(1):98–106. doi:10.1142/S1793545808000054

    Article  Google Scholar 

  11. Singh SP, Deshmukh A, Chaturvedi P et al (2012) In vivo Raman spectroscopic identification of premalignant lesions in oral buccal mucosa. J Biomed Opt 17(10):1050021–1050029. doi:10.1117/1.JBO.17.10.105002

    Article  Google Scholar 

  12. Rubina S, Vidyasagar MS, Murali KC (2013) Raman spectroscopic study on prediction of treatment response in cervical cancers. J Innov Opt Health Sci 6(2):1350014. doi:10.1142/S1793545813500144

    Article  Google Scholar 

  13. Pinto F, Mielewczik M, Liebisch F et al (2013) Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach. PLoS One 8(9):e73234. doi:10.1371/journal.pone.0073234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mirabal YN, Chang SK, Atkinson EN et al (2002) Reflectance spectroscopy for in vivo detection of cervical precancer. J Biomed Opt 7(4):587–594. doi:10.1117/1.1502675

    Article  PubMed  Google Scholar 

  15. Mourant JR, Bocklage TJ, Powers TM et al (2007) In vivo light scattering measurements for detection of precancerous conditions of the cervix. Gynecol Oncol 105:439–445. doi:10.1016/j.ygyno.2007.01.001

    Article  PubMed  Google Scholar 

  16. Wang A, Nammalavar V, Drezek R (2007) Targeting spectral signatures of progressively dysplastic stratified epithelia using angularly variable fiber geometry in reflectance Monte Carlo simulations. J Biomed Opt 12(4):044012. doi:10.1117/1.2769328

    Article  PubMed  Google Scholar 

  17. Tabrizi SH, Aghamiri SMR, Farzaneh F et al (2014) The use of optical spectroscopy for in vivo detection of cervical pre-cancer. Lasers Med Sci 29:831–845

    Article  Google Scholar 

  18. Roblyer D, Park SY, Richards-Kortum R et al (2007) Objective screening for cervical cancer in developing nations: lessons from Nigeria. Gynecol Oncol 107:S94–S97. doi:10.1016/j.ygyno.2007.07.042

    Article  PubMed  Google Scholar 

  19. Karpińska J (2012) Derivative spectrophotometry-recent applications and directions of developments. Talanta 64(4):801–822

    Article  Google Scholar 

  20. Wachman ES, Geyer SJ, Recht JM et al (2014) Simultaneous imaging of cellular morphology and multiple biomarkers using an acousto-optic tunable filter-based bright field microscope. J Biomed Opt 19(5):0560061–05600614. doi:10.1117/1.JBO.19.5.056006

    Article  Google Scholar 

  21. Stratis DN, Eland KL, Carter JC et al (2001) Comparison of acousto-optic and liquid crystal tunable filters for laser-induced breakdown spectroscopy. Appl Spectrosc 55(8):999–1004

    Article  CAS  Google Scholar 

  22. Becker BL, Lusch DP, Qi J (2005) Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis. Remote Sens Environ 97:238–248. doi:10.1016/j.rse.2005.04.020

    Article  Google Scholar 

  23. Fabrizii M, Moinfar F, Jelinek HF et al (2014) Fractal analysis of cervical intraepithelial neoplasia. PLoS One 9(10):e108457. doi:10.1371/journal.pone.0108457

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nordstrom RJ, Burke L, Niloff JM et al (2001) Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg Med 29:118–127. doi:10.1002/lsm.1097

    Article  CAS  PubMed  Google Scholar 

  25. Chang SK, Mirabal YN, Atkinson EN et al (2005) Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer. J Biomed Opt 10(2):024031. doi:10.1117/1.1899686

    Article  PubMed  Google Scholar 

  26. Thekkek N, Richards-Kortum R (2008) Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat Rev Cancer 8(9):725–731. doi:10.1038/nrc2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morimoto S, McClure WF, Stanfield DL (2001) Hand-held NIR spectrometry: Part I: an instrument based upon gap-second derivative theory. Appl Spectrosc 55(2):182–189

    Article  CAS  Google Scholar 

  28. Balas C (2001) A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix. Biomed Eng IEEE Trans 48(1):96–104. doi:10.1109/10.900259

    Article  CAS  Google Scholar 

  29. Collier T, Follen M, Malpica A et al (2005) Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy. Appl Opt 44(11):2072–2081. doi:10.1364/AO.44.002072

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was partially supported by Natural Science Foundation of China (Nos. 81271527 and 81327803) and the Fundamental Research Funds for the Central Universities (WK2090090013). The authors are grateful for the help of the traceable reflectance standard provided by Dr. David Allen at National Institute of Standards and Technology (NIST).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiwu Zhang or Ronald X. Xu.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zheng, W., Bu, Y. et al. Multi-scale hyperspectral imaging of cervical neoplasia. Arch Gynecol Obstet 293, 1309–1317 (2016). https://doi.org/10.1007/s00404-015-3906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3906-8

Keywords

Navigation