Skip to main content

Advertisement

Log in

Simultaneous detection of human papillomavirus integration and c-MYC gene amplification in cervical lesions: an emerging marker for the risk to progression

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The persistence of high-risk oncogenic human papillomavirus (HR-HPV) infection and its integration into the host genome are key steps in the induction of malignant alterations. c-MYC chromosome region is a frequent localization for HPV insertion that has been observed in chromosome band 8q24 by fluorescence in situ hybridization (FISH). We report the HPV viral integration and amplification patterns of the c-MYC gene in cytological smears with FISH as a potential biomarker for the progression of squamous intraepithelial lesions (SIL).

Methods

HPV detection and genotyping by polymerase chain reaction (PCR) and FISH analysis by “Vysis Cervical FISH Probe” kit (ABBOTT Molecular Inc.) were performed in 37 cervical samples including 8 NILM, 7 ASC-US, 7 LSIL, 3 ASC-H, 7 HSIL and 5 SCC.

Results

The results show concordance between FISH and PCR techniques for HPV detection. The majority of the samples contained HR-HPV, the majority being -16 and -18 genotypes. HPV integration as determined by FISH was most frequent in high-risk lesions. The c-MYC gene amplification was found only in HPV-positive samples and was detected primarily in high-risk lesions and in cells with an integrated form of HPV.

Conclusions

HPV integration and c-MYC gene amplification detected by FISH could be an important biomarker for use in clinical practice to determine SIL with a risk of progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Trottier H, Franco EL (2006) The epidemiology of genital human papillomavirus infection. Vaccine 24:15

    Article  Google Scholar 

  2. Termini L, Villa LL (2008) Biomarkers in screening of Cervical Cancer. J Bras Doenças Sex Transm 20:125–131

    Google Scholar 

  3. Wentzensen N, Klug SJ (2009) Cervical cancer control in the era of HPV vaccination and novel biomarkers. Pathobiology 76:82–89

    Article  PubMed  Google Scholar 

  4. Chow LT, Broker TR, Steinberg BM (2010) The natural history of human papillomavirus infections of the mucosal epithelia. APMIS 118:422–449

    Article  CAS  PubMed  Google Scholar 

  5. Consolaro MEL, Maria-Engler SS (2012) Citologia Clínica Cérvico-vaginal: texto e atlas. Editora Roca, São Paulo

    Google Scholar 

  6. Wentzensen N, Vinokurova S, Von Knebel Doeberitz M (2004) Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Câncer Res 64:3878–3884

    Article  CAS  PubMed  Google Scholar 

  7. Xu B, Chotewutmontri S, Wolf S et al (2013) Multiplex identification of human papillomavirus 16 DNA integration sites in cervical carcinomas. PLoS ONE 8:e66693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai Q, Lv L, Shao Q, Li X, Dian A (2013) Human papillomavirus early proteins and apoptosis. Arch Gynecol Obstet 287(3):541–548. doi:10.1007/s00404-012-2665-z

    Article  CAS  PubMed  Google Scholar 

  9. Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Ver Cell Dev Biol 16:653–699

    Article  CAS  Google Scholar 

  10. Policht FA, Song M, Sitailo S et al (2010) Analysis of genetic copy number changes in cervical disease progression. BMC Cancer 10:432

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kübler K, Heinenberg S, Rudlowski C, Keyver-Paik MD, Abramian A, Merkelbach-Bruse S, Schildhaus HU (2015) c-myc copy number gain is a powerful prognosticator of disease outcome in cervical dysplasia. Oncotarget 6(2):825–835

    Article  PubMed  PubMed Central  Google Scholar 

  12. Peter M, Rosty C, Couturier J, Radvanyi F, Teshima H, Sastre-Garau X (2006) MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene 25:5985–5993

    Article  CAS  PubMed  Google Scholar 

  13. Yu T, Ferber MJ, Cheung TH, Chung TK, Wong YF, Smith DI (2005) The role of viral integration in the development of cervical cancer. Cancer Genet Cytogenet 158:27–34

    Article  CAS  PubMed  Google Scholar 

  14. Sokolova I, Algeciras-Schimnich A, Song M (2007) Chromosomal biomarkers for detection of human papillomavirus associated genomic instability in epithelial cells of cervical cytology specimens. J Mol Diagn 9:604–611

    Article  PubMed  PubMed Central  Google Scholar 

  15. Muñoz N (2009) Human papillomavirus and cancer: the epidemiological evidence. J Clin Virol 19:1–5

    Article  Google Scholar 

  16. Solomon D, Nayar R (2005) Sistema Bethesda para Citopatologia Cervicovaginal—Definições. Critérios e Notas Explicativas, Revinter

    Google Scholar 

  17. Manos MM, Waldman J, Zhang TY et al (1994) Epidemiology and partial nucleotide sequence of four novel genital human papillomaviruses. J Infect Dis 170:1096–1099

    Article  CAS  PubMed  Google Scholar 

  18. Santiago E, Camacho L, Junquera ML, Vázquez F (2006) Full HPV typing by a single restriction enzyme. J Clin Virol 37:38–46

    Article  CAS  PubMed  Google Scholar 

  19. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2009) A review of human carcinogens. Part B biological agents, Lyon

  20. Moukova L, Vranova V, Slamova I, Kissova M, Kuglik P (2012) Initial experience with determination of hTERC and MYCC amplification in cervical intraepithelial neoplasia and cervical carcinoma in the Czech Republic. Eur Oncol Haematol 8:92–96

    Article  Google Scholar 

  21. Obermann EC, Savic Prince S, Barascud A et al (2013) Prediction of outcome in patients with low-grade squamous intraepithelial lesions by fluorescence in situ hybridization analysis of human papillomavirus, TERC, and MYC. Cancer Cytopathol 121:423–431

    Article  PubMed  Google Scholar 

  22. García DA, Briceño I, Castillo M, Aristizábal FA (2011) Detection of gene amplification in MYCN, C-MYC, MYCL1, ERBB2, EGFR, AKT2, and human papilloma virus in samples from cervical smear normal cytology, intraepithelial cervical neoplasia (CIN I, II, III), and cervical cancer. Colomb Med 42:144–153

    Google Scholar 

  23. Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  CAS  PubMed  Google Scholar 

  24. Dong DD, Yang H, Li K et al (2010) Human leukocyte antigen-G (HLA-G) expression in cervical lesions: association with cancer progression, HPV 16/18 infection, and host immune response. J Hum Reprod Sci 17:718–723

    Article  Google Scholar 

  25. Pett M, Coleman N (2007) Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 212:356–367

    Article  CAS  PubMed  Google Scholar 

  26. Annunziata C, Buonaguro L, Buonaguro FM, Tornesello ML (2012) Characterization of the human papillomavirus (HPV) integration sites into genital cancers. Pathol Oncol Res 18:803–808

    Article  CAS  PubMed  Google Scholar 

  27. Akagi K, Li J, Broutian TR et al (2014) Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res 24:185–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560

    Article  CAS  PubMed  Google Scholar 

  29. Hopman AH, Smedts F, Dignef W et al (2004) Transition of high-grade cervical intraepithelial neoplasia to micro-invasive carcinoma is characterized by integration of HPV 16/18 and numerical chromosome abnormalities. J Pathol 202:23–33

    Article  PubMed  Google Scholar 

  30. Mantovani F, Banks L (2001) The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20:7874–7887

    Article  CAS  PubMed  Google Scholar 

  31. Evans MF, Cooper K (2004) Human papillomavirus integration: detection by in situ hybridization and potential clinical application. J Pathol 202:1–4

    Article  PubMed  Google Scholar 

  32. Woodman CB, Collins SI, Young LS (2007) The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7:11–22

    Article  CAS  PubMed  Google Scholar 

  33. Gao G, Johnson SH, Kasperbauer JL et al (2014) Mate pair sequencing of oropharyngeal squamous cell carcinomas reveals that HPV integration occurs much less frequently than in cervical cancer. J Clin Virol 59:195–200

    Article  PubMed  Google Scholar 

  34. Scarpini CG, Groves IJ, Pett IJ, Ward D, Coleman N (2014) Virus transcript levels and cell growth rates after naturally occurring HPV16 integration events in basal cervical keratinocytes. J Pathol 233:281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Evans MF, Mount SL, Beatty BG, Cooper K (2002) Biotinyl-tyramide-based in situ hybridization signal patterns distinguish human papillomavirus type and grade of cervical intraepithelial neoplasia. Mod Pathol 15:1339–1347

    Article  PubMed  Google Scholar 

  36. Cañadas MP, Videlac S, Darwicha L et al (2010) Human papillomavirus HPV-16, 18, 52 and 58 integration in cervical cells of HIV-1-infected women. J Clin Virol 48:198–201

    Article  PubMed  Google Scholar 

  37. Das P, Thomas A, Mahantshetty U, Shrivastava S, Deodhar K, Mulherkar R (2012) HPV genotyping and site of viral integration in cervical cancers in indian women. PLoS ONE 7:e41012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bouvard V, Baan R, Straif K et al (2009) A review of human carcinogens—part B: biological agents. Lancet Oncol 10:321–322

    Article  PubMed  Google Scholar 

  39. Parkin DM, Bray F (2006) The burden of HPV-related cancers, Chapter 2. Vaccine 24:S11–S25

    Article  Google Scholar 

  40. Ho CM, Lee BH, Chang SF et al (2011) Integration of human papillomavirus correlates with high levels of viral oncogene transcripts in cervical carcinogenesis. Virus Res 161:124–130

    Article  CAS  PubMed  Google Scholar 

  41. Chen S, Yang Z, Zhang Y et al (2012) Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia. Pathol 7:40

    Article  CAS  Google Scholar 

  42. Song M, Ruth A, Policht FA et al (2010) Dysplastic cells in cytological cervical samples show a high incidence of chromosomal abnormalities. Diagn Cytopathol 38:28–33

    PubMed  Google Scholar 

  43. Ferber MJ, Thorland EC, Brink AA et al (2003) Preferential integration of human papillomavirus type 18 near the c-MYC locus in cervical carcinoma. Oncogene 22:7233–7242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledgements go to Abbott Company for providing the kits for realization of this research and Ph.D. Marcelo Gialluisi Bonini at College of Medicine, Departments of Medicine, Pharmacology and Pathology, University of Illinois at Chicago, for invaluable partnership and collaborations. This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível superior (CAPES), Brazilian Government (PVE A109/2013 and AUX/PE-PRODOC 2571/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vânia Ramos Sela da Silva.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimenes, F., Souza, R.P., de Abreu, A.L.P. et al. Simultaneous detection of human papillomavirus integration and c-MYC gene amplification in cervical lesions: an emerging marker for the risk to progression. Arch Gynecol Obstet 293, 857–863 (2016). https://doi.org/10.1007/s00404-015-3870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3870-3

Keywords

Navigation