Skip to main content
Log in

Initiation of ovarian stimulation independent of the menstrual cycle: a case–control study

  • Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

In the GnRH-antagonist protocol, ovarian stimulation with gonadotropins typically commences on cycle day 2 or 3. Initiation of ovarian stimulation with a spontaneously occurring menstruation, however, poses significant organizational challenges for treatment centres and patients alike. It has previously been demonstrated in the context of fertility preservation that initiation of stimulation in the luteal phase is feasible in terms of retrieval of mature oocytes for cryopreservation. Herein, we report the extension of this concept to a routine IVF setting with the aim of establishing an ovarian stimulation protocol, which can be utilized independent of menstruation. Because of asynchrony of endometrium and embryo in such a setting, all fertilized oocytes have to be cryopreserved for a later transfer.

Methods

This was a prospective, case–control study (trial registration: NCT00795041) on the feasibility of starting ovarian stimulation in a GnRH-antagonist protocol in the luteal phase. Inclusion criteria were: IVF or ICSI; 18–36 years; ≤3 previous IVF/ICSI attempts; BMI 20–30 kg/m2; regular cycle (28–35 days); luteal phase progesterone >7 ng/ml at initiation of stimulation. Exclusion criteria were: PCOS, endometriosis ≥AFS III°, unilateral ovary, expected poor response. Stimulation was performed with highly purified uFSH (Bravelle®) 300 IU/day and 0.25 mg/day GnRH-antagonist starting on cycle day 19–21 of a spontaneous menstrual cycle and commencing until hCG administration when three follicles ≥17 mm were present. All 2PN stage oocytes were vitrified for later transfers in programmed cycles. Feasibility was defined as the achievement of ongoing pregnancies progressing beyond the 12th gestational week in at least 2/10 study subjects (primary outcome). Secondary outcomes were gonadotropin consumption per oocyte obtained, stimulation duration, and fertilization rates. Study subjects were matched in a 1:3 ratio with concomitantly treated control cases of similar age, BMI, and duration of infertility who were treated in a conventional GnRH-antagonist protocol with 150–225 rFSH or HP-HMG/day.

Results

The study group consisted of ten subjects, mean age 31.4 years, BMI 25.4 kg/m2, of which one had fertilization failure. Mean stimulation duration was 11.7 (SD 1.6) vs. 9.1 (SD 1.3) days, mean cumulative FSH dose was 3,495.0 (SD 447.5) vs. 2,040.5 (SD 576.2) IU, and mean number of oocytes was 8.8 (SD 5.0) vs. 10.0 (SD 5.4) in study vs. control group, respectively. Per follicle ≥10 mm, the cumulative FSH dose was 274.5 (SD 130.8) IU vs. 245.2 (SD 232.3) IU in study and control groups, respectively. Cumulative ongoing pregnancy rates were 1/10 (10 %) and 6/30 (20.0 %) in study and control group, respectively (difference: 10 %, 95 % confidence interval of the difference: −29.2–22.2 %, p = 0.47). Fertilization rate was similar between groups, with 63.5 % (SD 32.9) in the study and 61.3 % (SD 26.7) in the control group, respectively. Serum estradiol levels were significantly lower on the day of triggering final oocyte maturation with 1,005.3 (SD 336.2) vs. 1,977.4 pg/ml (SD 1,106.5) in study and control group, respectively. Similarly, peak estradiol biosynthesis per growing follicle ≥10 mm was lower in the study group (134 pg/ml, SD 158.4 vs. 186.7 pg/ml, SD 84.7).

Conclusions

Per retrieved oocyte, a nearly threefold higher dose of FSH had to be administered when ovarian stimulation had been initiated in the luteal phase. Furthermore, the present study casts doubt on the efficacy of initiating ovarian stimulation in the luteal phase in terms of pregnancy achievement. Thus, this concept is currently not feasible for routine use, and it should also be explored further before using it at larger scale in the context of emergency stimulation for fertility preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diedrich K, Diedrich C, Santos E, Zoll C, al-Hasani S, Reissmann T et al (1994) Suppression of the endogenous luteinizing hormone surge by the gonadotrophin-releasing hormone antagonist Cetrorelix during ovarian stimulation. Hum Reprod 9:788–791 (Oxford, England)

    PubMed  CAS  Google Scholar 

  2. Griesinger G, Kolibianakis EM, Venetis C, Diedrich K, Tarlatzis B (2010) Oral contraceptive pretreatment significantly reduces ongoing pregnancy likelihood in gonadotropin-releasing hormone antagonist cycles: an updated meta-analysis. Fertil Steril 94:2382–2384

    Article  PubMed  CAS  Google Scholar 

  3. Hohmann FP, Macklon NS, Fauser BC (2003) A randomized comparison of two ovarian stimulation protocols with gonadotropin-releasing hormone (GnRH) antagonist cotreatment for in vitro fertilization commencing recombinant follicle-stimulating hormone on cycle day 2 or 5 with the standard long GnRH agonist protocol. J Clin Endocrinol Metab 88:166–173

    Article  PubMed  CAS  Google Scholar 

  4. Blockeel C, Sterrenburg MD, Broekmans FJ, Eijkemans MJ, Smitz J, Devroey P et al (2011) Follicular phase endocrine characteristics during ovarian stimulation and GnRH antagonist cotreatment for IVF: RCT comparing recFSH initiated on cycle day 2 or 5. J Clin Endocrinol Metab 96:1122–1128

    Article  PubMed  CAS  Google Scholar 

  5. von Wolff M, Thaler CJ, Frambach T, Zeeb C, Lawrenz B, Popovici RM et al (2009) Ovarian stimulation to cryopreserve fertilized oocytes in cancer patients can be started in the luteal phase. Fertil Steril 92:1360–1365

    Article  Google Scholar 

  6. Sonmezer M, Turkcuoglu I, Coskun U, Oktay K (2011) Random-start controlled ovarian hyperstimulation for emergency fertility preservation in letrozole cycles. Fertil Steril 95(6):2125.e9–2125.e11. doi:10.1016/j.fertnstert.2011.01.030

    Article  Google Scholar 

  7. Kuwayama M, Vajta G, Kato O, Leibo SP (2005) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 11:300–308

    Article  PubMed  Google Scholar 

  8. Bals-Pratsch M, Al-Hasani S, Schopper B, Diedrich C, Hoepfner AS, Weiss J et al (1999) A simple, inexpensive and effective artificial cycle with exogenous transdermal oestradiol and vaginal progesterone for the transfer of cryopreserved pronucleated human oocytes in women with normal cycles. Hum Reprod 14(Suppl 1):222–230 (Oxford, England)

    Article  PubMed  CAS  Google Scholar 

  9. Kolibianakis EM, Venetis CA, Tarlatzis BC (2009) Cryopreservation of human embryos by vitrification or slow freezing: which one is better? Curr Opin Obstet Gynecol 21:270–274

    Article  PubMed  Google Scholar 

  10. Russell DL, Robker RL (2007) Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Updat 13:289–312

    Article  CAS  Google Scholar 

  11. Nilsson L, Andersen AN, Lindenberg S, Hausken J, Andersen CY, Kahn JA (2010) Ganirelix for luteolysis in poor responder patients undergoing IVF treatment: a Scandinavian multicenter ‘extended pilot study’. Acta Obstet Gynecol Scand 89(6):828–831

    Article  PubMed  CAS  Google Scholar 

  12. Fridén BE, Nilsson L (2005) Gonadotrophin-releasing hormone-antagonist luteolysis during the preceding mid-luteal phase is a feasible protocol in ovarian hyperstimulation before in vitro fertilization. Acta Obstet Gynecol Scand 84(8):812–816

    PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by an unrestricted educational grant of Ferring Arzneimittel GmbH, Germany.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Griesinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buendgen, N.K., Schultze-Mosgau, A., Cordes, T. et al. Initiation of ovarian stimulation independent of the menstrual cycle: a case–control study. Arch Gynecol Obstet 288, 901–904 (2013). https://doi.org/10.1007/s00404-013-2794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-013-2794-z

Keywords

Navigation